Computer Science > Programming Languages
[Submitted on 6 Apr 2024]
Title:IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Weakly Isolated Data Store Applications
View PDF HTML (experimental)Abstract:This paper presents the first dynamic predictive analysis for data store applications under weak isolation levels, called Isopredict. Given an observed serializable execution of a data store application, Isopredict generates and solves SMT constraints to find an unserializable execution that is a feasible execution of the application. Isopredict introduces novel techniques that handle divergent application behavior; solve mutually recursive sets of constraints; and balance coverage, precision, and performance. An evaluation on four transactional data store benchmarks shows that Isopredict often predicts unserializable behaviors, 99% of which are feasible.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.