Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Mar 2024 (v1), last revised 3 Oct 2024 (this version, v3)]
Title:Mitigating Dialogue Hallucination for Large Vision Language Models via Adversarial Instruction Tuning
View PDF HTML (experimental)Abstract:Mitigating hallucinations of Large Vision Language Models,(LVLMs) is crucial to enhance their reliability for general-purpose assistants. This paper shows that such hallucinations of LVLMs can be significantly exacerbated by preceding user-system dialogues. To precisely measure this, we first present an evaluation benchmark by extending popular multi-modal benchmark datasets with prepended hallucinatory dialogues powered by our novel Adversarial Question Generator (AQG), which can automatically generate image-related yet adversarial dialogues by adopting adversarial attacks on LVLMs. On our benchmark, the zero-shot performance of state-of-the-art LVLMs drops significantly for both the VQA and Captioning tasks. Next, we further reveal this hallucination is mainly due to the prediction bias toward preceding dialogues rather than visual content. To reduce this bias, we propose Adversarial Instruction Tuning (AIT) that robustly fine-tunes LVLMs against hallucinatory dialogues. Extensive experiments show our proposed approach successfully reduces dialogue hallucination while maintaining performance.
Submission history
From: Zhaofang Qian [view email][v1] Fri, 15 Mar 2024 17:27:12 UTC (4,097 KB)
[v2] Sat, 25 May 2024 06:31:18 UTC (5,276 KB)
[v3] Thu, 3 Oct 2024 18:08:57 UTC (5,756 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.