Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2024]
Title:Low-Cost and Real-Time Industrial Human Action Recognitions Based on Large-Scale Foundation Models
View PDF HTML (experimental)Abstract:Industrial managements, including quality control, cost and safety optimization, etc., heavily rely on high quality industrial human action recognitions (IHARs) which were hard to be implemented in large-scale industrial scenes due to their high costs and poor real-time performance. In this paper, we proposed a large-scale foundation model(LSFM)-based IHAR method, wherein various LSFMs and lightweight methods were jointly used, for the first time, to fulfill low-cost dataset establishment and real-time IHARs. Comprehensive tests on in-situ large-scale industrial manufacturing lines elucidated that the proposed method realized great reduction on employment costs, superior real-time performance, and satisfactory accuracy and generalization capabilities, indicating its great potential as a backbone IHAR method, especially for large-scale industrial applications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.