Computer Science > Computation and Language
[Submitted on 10 Mar 2024]
Title:FMPAF: How Do Fed Chairs Affect the Financial Market? A Fine-grained Monetary Policy Analysis Framework on Their Language
View PDF HTML (experimental)Abstract:The effectiveness of central bank communication is a crucial aspect of monetary policy transmission. While recent research has examined the influence of policy communication by the chairs of the Federal Reserve on various financial variables, much of the literature relies on rule-based or dictionary-based methods in parsing the language of the chairs, leaving nuanced information about policy stance contained in nonverbal emotion out of the analysis. In the current study, we propose the Fine-Grained Monetary Policy Analysis Framework (FMPAF), a novel approach that integrates large language models (LLMs) with regression analysis to provide a comprehensive analysis of the impact of the press-conference communications of chairs of the Federal Reserve on financial markets. We conduct extensive comparisons of model performance under different levels of granularity, modalities, and communication scenarios. Based on our preferred specification, a one-unit increase in the sentiment score is associated with an increase of the price of S\&P 500 Exchange-Traded Fund by approximately 500 basis points, a 15-basis-point decrease in the policy interest rate, while not leading to a significant response in exchange rates.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.