Computer Science > Information Theory
[Submitted on 17 Feb 2024 (v1), last revised 11 Jun 2024 (this version, v3)]
Title:Contraction of Markovian Operators in Orlicz Spaces and Error Bounds for Markov Chain Monte Carlo
View PDF HTML (experimental)Abstract:We introduce a novel concept of convergence for Markovian processes within Orlicz spaces, extending beyond the conventional approach associated with $L_p$ spaces. After showing that Markovian operators are contractive in Orlicz spaces, our key technical contribution is an upper bound on their contraction coefficient, which admits a closed-form expression. The bound is tight in some settings, and it recovers well-known results, such as the connection between contraction and ergodicity, ultra-mixing and Doeblin's minorisation. Specialising our approach to $L_p$ spaces leads to a significant improvement upon classical Riesz-Thorin's interpolation methods. Furthermore, by exploiting the flexibility offered by Orlicz spaces, we can tackle settings where the stationary distribution is heavy-tailed, a severely under-studied setup. As an application of the framework put forward in the paper, we introduce tighter bounds on the mixing time of Markovian processes, better exponential concentration bounds for MCMC methods, and better lower bounds on the burn-in period. To conclude, we show how our results can be used to prove the concentration of measure phenomenon for a sequence of Markovian random variables.
Submission history
From: Amedeo Roberto Esposito [view email][v1] Sat, 17 Feb 2024 05:30:57 UTC (448 KB)
[v2] Thu, 22 Feb 2024 07:39:46 UTC (448 KB)
[v3] Tue, 11 Jun 2024 12:23:12 UTC (787 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.