Computer Science > Computers and Society
[Submitted on 10 Jan 2024]
Title:A Deep Learning Approach Towards Student Performance Prediction in Online Courses: Challenges Based on a Global Perspective
View PDF HTML (experimental)Abstract:Analyzing and evaluating students' progress in any learning environment is stressful and time consuming if done using traditional analysis methods. This is further exasperated by the increasing number of students due to the shift of focus toward integrating the Internet technologies in education and the focus of academic institutions on moving toward e-Learning, blended, or online learning models. As a result, the topic of student performance prediction has become a vibrant research area in recent years. To address this, machine learning and data mining techniques have emerged as a viable solution. To that end, this work proposes the use of deep learning techniques (CNN and RNN-LSTM) to predict the students' performance at the midpoint stage of the online course delivery using three distinct datasets collected from three different regions of the world. Experimental results show that deep learning models have promising performance as they outperform other optimized traditional ML models in two of the three considered datasets while also having comparable performance for the third dataset.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.