Computer Science > Networking and Internet Architecture
[Submitted on 13 Nov 2023]
Title:Effective In-vehicle Intrusion Detection via Multi-view Statistical Graph Learning on CAN Messages
View PDFAbstract:As an important component of internet of vehicles (IoV), intelligent connected vehicles (ICVs) have to communicate with external networks frequently. In this case, the resource-constrained in-vehicle network (IVN) is facing a wide variety of complex and changing external cyber-attacks, especially the masquerade attack with high difficulty of detection while serious damaging effects that few counter measures can identify successfully. Moreover, only coarse-grained recognition can be achieved in current mainstream intrusion detection mechanisms, i.e., whether a whole data flow observation window contains attack labels rather than fine-grained recognition on every single data item within this window. In this paper, we propose StatGraph: an Effective Multi-view Statistical Graph Learning Intrusion Detection to implement the fine-grained intrusion detection. Specifically, StatGraph generates two statistical graphs, timing correlation graph (TCG) and coupling relationship graph (CRG), based on data streams. In given message observation windows, edge attributes in TCGs represent temporal correlation between different message IDs, while edge attributes in CRGs denote the neighbour relationship and contextual similarity. Besides, a lightweight shallow layered GCN network is trained based graph property of TCGs and CRGs, which can learn the universal laws of various patterns more effectively and further enhance the performance of detection. To address the problem of insufficient attack types in previous intrusion detection, we select two real in-vehicle CAN datasets that cover four new attacks never investigated before. Experimental result shows StatGraph improves both detection granularity and detection performance over state-of-the-art intrusion detection methods.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.