Computer Science > Robotics
[Submitted on 14 Mar 2023 (v1), last revised 4 Sep 2023 (this version, v2)]
Title:PRISMA: A Novel Approach for Deriving Probabilistic Surrogate Safety Measures for Risk Evaluation
View PDFAbstract:Surrogate Safety Measures (SSMs) are used to express road safety in terms of the safety risk in traffic conflicts. Typically, SSMs rely on assumptions regarding the future evolution of traffic participant trajectories to generate a measure of risk, restricting their applicability to scenarios where these assumptions are valid. In response to this limitation, we present the novel Probabilistic RISk Measure derivAtion (PRISMA) method. The objective of the PRISMA method is to derive SSMs that can be used to calculate in real time the probability of a specific event (e.g., a crash). The PRISMA method adopts a data-driven approach to predict the possible future traffic participant trajectories, thereby reducing the reliance on specific assumptions regarding these trajectories. Since the PRISMA is not bound to specific assumptions, the PRISMA method offers the ability to derive multiple SSMs for various scenarios. The occurrence probability of the specified event is based on simulations and combined with a regression model, this enables our derived SSMs to make real-time risk estimations. To illustrate the PRISMA method, an SSM is derived for risk evaluation during longitudinal traffic interactions. Since there is no known method to objectively estimate risk from first principles, i.e., there is no known risk ground truth, it is very difficult, if not impossible, to objectively compare the relative merits of two SSMs. Instead, we provide a method for benchmarking our derived SSM with respect to expected risk trends. The application of the benchmarking illustrates that the SSM matches the expected risk trends. Whereas the derived SSM shows the potential of the PRISMA method, future work involves applying the approach for other types of traffic conflicts, such as lateral traffic conflicts or interactions with vulnerable road users.
Submission history
From: Erwin de Gelder [view email][v1] Tue, 14 Mar 2023 13:24:25 UTC (190 KB)
[v2] Mon, 4 Sep 2023 08:37:30 UTC (196 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.