Computer Science > Robotics
[Submitted on 4 Nov 2022]
Title:A Data-Driven Slip Estimation Approach for Effective Braking Control under Varying Road Conditions
View PDFAbstract:The performances of braking control systems for robotic platforms, e.g., assisted and autonomous vehicles, airplanes and drones, are deeply influenced by the road-tire friction experienced during the maneuver. Therefore, the availability of accurate estimation algorithms is of major importance in the development of advanced control schemes. The focus of this paper is on the estimation problem. In particular, a novel estimation algorithm is proposed, based on a multi-layer neural network. The training is based on a synthetic data set, derived from a widely used friction model. The open loop performances of the proposed algorithm are evaluated in a number of simulated scenarios. Moreover, different control schemes are used to test the closed loop scenario, where the estimated optimal slip is used as the set-point. The experimental results and the comparison with a model based baseline show that the proposed approach can provide an effective best slip estimation.
Submission history
From: Francesco Crocetti [view email][v1] Fri, 4 Nov 2022 16:24:05 UTC (2,112 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.