Mathematics > Numerical Analysis
[Submitted on 25 Sep 2022 (v1), last revised 22 May 2023 (this version, v2)]
Title:Error analysis based on inverse modified differential equations for discovery of dynamics using linear multistep methods and deep learning
View PDFAbstract:Along with the practical success of the discovery of dynamics using deep learning, the theoretical analysis of this approach has attracted increasing attention. Prior works have established the grid error estimation with auxiliary conditions for the discovery of dynamics using linear multistep methods and deep learning. And we extend the existing error analysis in this work. We first introduce the concept of inverse modified differential equations (IMDE) for linear multistep methods and show that the learned model returns a close approximation of the IMDE. Based on the IMDE, we prove that the error between the discovered system and the target system is bounded by the sum of the LMM discretization error and the learning loss. Furthermore, the learning loss is quantified by combining the approximation and generalization theories of neural networks, and thereby we obtain the priori error estimates for the discovery of dynamics using linear multistep methods. Several numerical experiments are performed to verify the theoretical analysis.
Submission history
From: Aiqing Zhu [view email][v1] Sun, 25 Sep 2022 02:27:56 UTC (281 KB)
[v2] Mon, 22 May 2023 08:12:48 UTC (295 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.