Computer Science > Machine Learning
[Submitted on 21 Apr 2022 (v1), last revised 24 Apr 2022 (this version, v2)]
Title:Eliminating Backdoor Triggers for Deep Neural Networks Using Attention Relation Graph Distillation
View PDFAbstract:Due to the prosperity of Artificial Intelligence (AI) techniques, more and more backdoors are designed by adversaries to attack Deep Neural Networks (DNNs).Although the state-of-the-art method Neural Attention Distillation (NAD) can effectively erase backdoor triggers from DNNs, it still suffers from non-negligible Attack Success Rate (ASR) together with lowered classification ACCuracy (ACC), since NAD focuses on backdoor defense using attention features (i.e., attention maps) of the same order. In this paper, we introduce a novel backdoor defense framework named Attention Relation Graph Distillation (ARGD), which fully explores the correlation among attention features with different orders using our proposed Attention Relation Graphs (ARGs). Based on the alignment of ARGs between both teacher and student models during knowledge distillation, ARGD can eradicate more backdoor triggers than NAD. Comprehensive experimental results show that, against six latest backdoor attacks, ARGD outperforms NAD by up to 94.85% reduction in ASR, while ACC can be improved by up to 3.23%.
Submission history
From: Mingsong Chen [view email][v1] Thu, 21 Apr 2022 09:01:22 UTC (453 KB)
[v2] Sun, 24 Apr 2022 03:22:38 UTC (454 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.