Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 1 Mar 2022]
Title:Learning Intermediate Representations using Graph Neural Networks for NUMA and Prefetchers Optimization
View PDFAbstract:There is a large space of NUMA and hardware prefetcher configurations that can significantly impact the performance of an application. Previous studies have demonstrated how a model can automatically select configurations based on the dynamic properties of the code to achieve speedups. This paper demonstrates how the static Intermediate Representation (IR) of the code can guide NUMA/prefetcher optimizations without the prohibitive cost of performance profiling. We propose a method to create a comprehensive dataset that includes a diverse set of intermediate representations along with optimum configurations. We then apply a graph neural network model in order to validate this dataset. We show that our static intermediate representation based model achieves 80% of the performance gains provided by expensive dynamic performance profiling based strategies. We further develop a hybrid model that uses both static and dynamic information. Our hybrid model achieves the same gains as the dynamic models but at a reduced cost by only profiling 30% of the programs.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.