The Principle of Differential Subordination and Its Application to Analytic and p-Valent Functions Defined by a Generalized Fractional Differintegral Operator
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Miller, S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var. Theory Appl. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Goyal, G.P.; Prajapat, J.K. A new class of analytic p-valent functions with negative coefficients and fractional calculus operators. Tamsui Oxf. J. Math. Sci. 2004, 20, 175–186. [Google Scholar]
- Prajapat, J.K.; Aouf, M.K. Majorization problem for certain class of p-valently analytic function defined by generalized fractional differintegral operator. Comput. Math. Appl. 2012, 63, 42–47. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saigo, M.; Owa, S. A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 1988, 131, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Prajapat, J.K.; Raina, R.K.; Srivastava, H.M. Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators. Integr. Transforms Spec. Funct. 2007, 18, 639–651. [Google Scholar] [CrossRef]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. Some characterizations and distortions theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions. Nagoya Math. J. 1987, 106, 1–28. [Google Scholar] [CrossRef]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integr. Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.-T.; Li, S.-H.; Aouf, M.K. Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator. Integr. Transforms Spec. Funct. 2013, 24, 873–883. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Subclasses of p-valent functions of bounded boundary rotation involving the generalized fractional differintegral operator. Comptes Rendus Math. 2013, 351, 787–792. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Srivastava, H.M.; Saigo, M. Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation. J. Math. Anal. Appl. 1987, 121, 325–369. [Google Scholar] [CrossRef] [Green Version]
- Owa, S.; Saigo, M.; Srivastava, H.M. Some characterization theorems for starlike and convex functions involving a certain fractional integral operator. J. Math. Anal. Appl. 1989, 140, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Marin, M.; Ellahi, R.; Alamri, S.Z. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf. Res. 2018, 49, 1837–1848. [Google Scholar] [CrossRef]
- Richard, L. Magin, Fractional Calculus in Bioengineering; Begell House: Redding, CA, USA, 2006. [Google Scholar]
- Martínez-García, M.; Gordon, T.; Shu, L. Extended crossover model for human-control of fractional order plants. IEEE Access 2017, 5, 27622–27635. [Google Scholar] [CrossRef]
- Othman, M.I.; Marin, M. Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory. Results Phys. 2017, 7, 3863–3872. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T.; Reade, M.O. Subordination-preserving integral operators. Trans. Am. Math. Soc. 1984, 283, 605–615. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 2016, 39, 545–560. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpath. J. Math. 2018, 34, 103–113. [Google Scholar]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Prajapati, A.; Gochhayat, P. Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator. Appl. Math. Inf. Sci. 2018, 12, 469–481. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Răducanu, D.; Zaprawa, P. A certain subclass of analytic functions defined by means of differential subordination. Filomat 2016, 30, 3743–3757. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Deng, G.-T. Some families of analytic functions in the upper half-plane and their associated differential subordination and differential superordination properties and problems. Appl. Math. Inf. Sci. 2017, 11, 1247–1257. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Deng, G.-T.; Li, S.-H. Second-order differential superordination for analytic functions in the upper half-plane. J. Nonlinear Sci. Appl. 2017, 10, 5271–5280. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. Some applications of differential subordination and the Dziok-Srivastava convolution operator. Appl. Math. Comput. 2014, 230, 496–508. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Univalent solutions of Briot-Bouquet differential equations. J. Differ. Equ. 1985, 56, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C.; Jensen, G. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Hallenbeck, D.J.; MacGregor, T.H. Linear Problems and Convexity Techniques in Geometric Function Theory; Pitman: London, UK, 1984. [Google Scholar]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 2, 169–185. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, N.E.; Aouf, M.K.; Srivastava, R. The Principle of Differential Subordination and Its Application to Analytic and p-Valent Functions Defined by a Generalized Fractional Differintegral Operator. Symmetry 2019, 11, 1083. https://doi.org/10.3390/sym11091083
Cho NE, Aouf MK, Srivastava R. The Principle of Differential Subordination and Its Application to Analytic and p-Valent Functions Defined by a Generalized Fractional Differintegral Operator. Symmetry. 2019; 11(9):1083. https://doi.org/10.3390/sym11091083
Chicago/Turabian StyleCho, Nak Eun, Mohamed Kamal Aouf, and Rekha Srivastava. 2019. "The Principle of Differential Subordination and Its Application to Analytic and p-Valent Functions Defined by a Generalized Fractional Differintegral Operator" Symmetry 11, no. 9: 1083. https://doi.org/10.3390/sym11091083
APA StyleCho, N. E., Aouf, M. K., & Srivastava, R. (2019). The Principle of Differential Subordination and Its Application to Analytic and p-Valent Functions Defined by a Generalized Fractional Differintegral Operator. Symmetry, 11(9), 1083. https://doi.org/10.3390/sym11091083