Estimation of Physiologic Pressures: Invasive and Non-Invasive Techniques, AI Models, and Future Perspectives
Abstract
:1. Introduction
2. Methodology
3. Physiology of In Vivo Pressures
3.1. Blood Pressure and Arterial Waveforms
3.2. Central Venous Pressure
3.3. Hepatic Portal Pressure
3.4. Intracranial Pressure
3.5. Intrauterine Pressure
3.6. Intraocular Pressure
3.7. Intra-Abdominal Pressure
4. Invasive Procedures and AI Applications
4.1. Invasive Techniques
4.2. AI Models Using Data from Invasive Techniques
4.3. Limitations of Invasive Techniques
5. Noninvasive and Artificial Intelligence Based Pressure Measurements
5.1. Continuous Blood Pressure Estimation
5.1.1. Imaging-Based Estimation Techniques
5.1.2. Oscillometry Based Estimation Techniques
5.1.3. Auscultation Based Estimation Techniques
5.1.4. Wearables
Study | AI Model Used | Model Performance Metrics | Limitations |
---|---|---|---|
Pessana et al. [123] | Artificial Neural Network (ANN) | Correlated with diameters from B-mode US images; R2 = 0.96 | Small study population, only male subjects recruited |
Jamthikar et al. [129] | ML-based cardiovascular risk calculator-called “AtheroEdge Composite Risk Score 2.0” (AECRS2.0ML) | High AUROC (0.87) when compared to FRS (0.67) and WHO (0.72) risk stratification models | No multiethnic cohort used |
Kachuee et al. [133] | Regression models (Linear regression, Decision tree, Support Vector Model (SVM), AdaBoost, Random Forest) | High accuracy in prediction of pre-hypertension SBP (73%), DBP (91%) and hypertension SBP (82%), DBP (98%); Grade A in BHS criteria | Parameters collected from database of pre-recorded signals * |
Cano et al. [135] | K-Nearest Neighbors (KNN), SVM and Bagging Ensemble Classifier | Distinguish Hypertensive and normotensive subjects; KNN: Accuracy 93.54% SVM: Accuracy 91.35%; Ensemble: Accuracy 90.69% | Parameters collected from database of pre-recorded signals * |
Soh et al. [136] | KNN | Classification of normal and masked Hypertension; Accuracy 97.7% | Physical extraction of features, small data size |
Baker et al. [137] | Combined Convolutional Neural Network-Long Short Term Memory Network (CNN-LSTM) | Mean average errors (MAE) of 4.41 mmHg for SBP, 2.91 mmHg for DBP, and 2.77 mmHg for MAP; Grade ‘A’ in BHS criteria | Parameters collected from database of pre-recorded signals * |
Luo et al. [138] | Unspecified Machine Learning (ML) model | SBP, DBP and pulse pressure with 94.8%, 95.8% and 95.8% accuracy | Cohort only included normotensive individuals, no multiethnic cohort used, no cross-validation done with gold standard techniques |
Lee et al. [148] | Bayesian model | Estimated SBP and DBP vs. Auscultatory method, correlation coefficient (r) of 0.86 and 0.87 respectively | Small sample size, manual measurement of BP for reference standard |
Lee et al. [149] | Gaussian Mixture Regression | SBP and DBP with MAE of 3.60 and 3.72 respectively | Small sample size, manual measurement of BP for reference standard |
Lim et al. [151] | Multiple Linear Regression (MLR) and Support Vector Regression (SVR) | Grade A in BHS criteria for SBP and DBP | Small sample size, only healthy subjects used |
Argha et al. [152] | Deep belief network (DBN)-Deep neural network (DNN) | Mean average errors (MAE): MAA (maximum amplitude algorithm) with 9.6 for SBP, 10.8 for DBP; MMSA (Maximum/Minimum slope algorithm) with 9.1 for SBP, 12.9 for DBP. | Parameters collected from database of pre-recorded signals |
Chang et al. [159] | CNN | Accuracy of 93.5% for both SBP, DBP | Small study group, faulty recording of microphone sounds, small amplitude sounds go undetected |
Chiang et al. [173] | Random forest | Personalised lifestyle recommendations; applying these recommendations showed SBP decreased by 3.8 and DBP decreased by 2.3. | Small study population; high drop off rate. |
Ibrahim et al. [166] | AdaBoost | BP prediction tailored to each individual’s vascular properties | Small study population |
Wang et al. [167] | Soft Stagewise Regression Network (SSR-Net) | BP prediction | Small study population; only young, healthy subjects used |
Lustrek et al. [168] | Multiple algorithms (Decision tree, KNN, Support vector regression, random forest) | Comprehensive self-management of Congestive Heart Failure (CHF), individualized healthcare recommendations | High digital literacy needed for proper application |
Huang et al. [169] | Multiple algorithms (Random forest, support vector classifier, naive bayes, generalized linear regression, stochastic gradient descent regressor) | Relative importance of risk factors collected form subjects, tracking prognosis response to treatment | Limited data on high risk group (subjects consisted of 70.2% low risk adults), data from an asian population |
Zhou et al. [170] | Random forest classifiers | CVD risk prediction, strong association between wearable derived features and genomic risk markers (regardless of presence of risk factors), strong association between wearable derived features and clinical events. | Limited input on lifestyle factors, short observation period, no gene-environment interaction study conducted |
Yoon et al. [174] | ANN | BP estimation compared to real collected ABP values; Grade A on BHS standard | Individual patient factors not considered |
Sheng-Kai Ma et al. [175] | Linear regression, Random forest, Support vector regression, Deep Neural Network (DNN), XGBoost | SBP (63.3% accuracy), DBP (80% accuracy) | Small sample size |
Sheeraz et al. [176] | Decision Tree | High or Low/Normal SBP or DBP | Small sample size, no external factors considered. |
5.2. Other Compartmental Pressures
5.2.1. Hepatic Venous Portal Gradient
5.2.2. Intracranial Pressure
5.2.3. Intrauterine Pressure
5.2.4. Intra-Abdominal Pressure
5.3. AI-Assisted Microwave Systems for Noninvasive Pressure Measurement
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tagawa, T.; Tamura, T.; Oberg, P.A. Biomedical Sensors and Instruments; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Clausen, I.; Glott, T. Development of clinically relevant implantable pressure sensors: Perspectives and challenges. Sensors 2014, 14, 17686–17702. [Google Scholar] [CrossRef]
- Poeggel, S.; Tosi, D.; Duraibabu, D.; Leen, G.; McGrath, D.; Lewis, E. Optical fibre pressure sensors in medical applications. Sensors 2015, 15, 17115–17148. [Google Scholar] [CrossRef] [Green Version]
- Torlincasi, A.M.; Lopez, R.A.; Waseem, M. Acute compartment syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Roșca, A.C.; Baciu, C.C.; Burtăverde, V.; Mateizer, A. Psychological consequences in patients with amputation of a limb. An interpretative-phenomenological analysis. Front. Psychol. 2021, 12, 537493. [Google Scholar] [CrossRef]
- Rodarte, J.R.; Noredin, G.; Miller, C.; Brusasco, V.; Pellegrino, R. Lung elastic recoil during breathing at increased lung volume. J. Appl. Physiol. 1999, 87, 1491–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaikijurajai, T.; Laffin, L.J.; Tang, W.H.W. Artificial intelligence and hypertension: Recent advances and future outlook. Am. J. Hypertens. 2020, 33, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Kalehoff, J.P.; Oparil, S. The story of the silent killer: A history of hypertension: Its discovery, diagnosis, treatment, and debates. Curr. Hypertens. Rep. 2020, 22, 72. [Google Scholar] [CrossRef] [PubMed]
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.C.; Davy, O.; Fink, S.; Fryar, C.D.; Gu, Q.; Hales, C.M.; Hughes, J.P.; et al. National Health and Nutrition Examination Survey 2017–March 2020 prepandemic data files development of files and prevalence estimates for selected health outcomes. In National Health Statistics Reports; National Center for Health Statistics (U.S.): Washington, DC, USA, 2021. [Google Scholar]
- Shahoud, J.S.; Sanvictores, T.; Aeddula, N.R. Physiology, arterial pressure regulation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Esper, S.A.; Pinsky, M.R. Arterial waveform analysis. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 363–380. [Google Scholar] [CrossRef]
- Thiele, R.H.; Durieux, M.E. Arterial waveform analysis for the anesthesiologist: Past, present, and future concepts. Anesth. Analg. 2011, 113, 766–776. [Google Scholar] [CrossRef]
- Germano, G.; Angotti, S.; Muscolo, M.; D’Auria, F.; Giordano, M. The (dP/dt) max derived from arterial pulse waveforms during 24 h blood pressure oscillometric recording. Blood Press. Monit. 1998, 3, 213–216. [Google Scholar]
- Tartiere, J.-M.; Logeart, D.; Beauvais, F.; Chavelas, C.; Kesri, L.; Tabet, J.-Y.; Cohen-Solal, A. Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur. J. Heart Fail. 2007, 9, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharman, J.E.; Qasem, A.M.; Hanekom, L.; Gill, D.S.; Lim, R.; Marwick, T.H. Radial pressure waveform dP/dt max is a poor indicator of left ventricular systolic function. Eur. J. Clin. Investig. 2007, 37, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Hall, M.E. Guyton and Hall Textbook of Medical Physiology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Blacher, J.; Evans, A.; Arveiler, D.; Amouyel, P.; Ferrières, J.; Bingham, A.; Yarnell, J.; Haas, B.; Montaye, M.; Ruidavets, J.-B.; et al. Residual cardiovascular risk in treated hypertension and hyperlipidaemia: The PRIME Study. J. Hum. Hypertens. 2010, 24, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anstey, D.E.; Moise, N.; Kronish, I.; Abdalla, M. Masked hypertension: Whom and how to screen? Curr. Hypertens. Rep. 2019, 21, 26. [Google Scholar] [CrossRef]
- Thorin-Trescases, N.; De Montgolfier, O.; Pinçon, A.; Raignault, A.; Caland, L.; Labbé, P.; Thorin, E. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. Am. J. Physiol.-Heart Circ. Physiol. 2018, 314, H1214–H1224. [Google Scholar] [CrossRef]
- Kelly, R.; Hayward, C.; Avolio, A.; O’Rourke, M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989, 80, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Kouz, K.; Scheeren, T.W.L.; de Backer, D.; Saugel, B. Pulse wave analysis to estimate cardiac output. Anesthesiology 2021, 134, 119–126. [Google Scholar] [CrossRef]
- Wilkinson, I.B.; Cockcroft, J.R.; Webb, D.J. Pulse wave analysis and arterial stiffness. J. Cardiovasc. Pharmacol. 1998, 32, S33–S37. [Google Scholar]
- Saugel, B.; Kouz, K.; Scheeren, T.W.; Greiwe, G.; Hoppe, P.; Romagnoli, S.; de Backer, D. Cardiac output estimation using pulse wave analysis—Physiology, algorithms, and technologies: A narrative review. Br. J. Anaesth. 2021, 126, 67–76. [Google Scholar] [CrossRef]
- Magder, S. Respiratory-Circulatory Interactions in Health and Disease; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Magder, S. More respect for the CVP. Intensive Care Med. 1998, 24, 651–653. [Google Scholar] [CrossRef]
- Starling, E.H. The Linacre Lecture on the Law of the Heart; Longmans, Green, & Company: London, UK, 1918. [Google Scholar]
- Notarius, C.; Levy, R.; Tully, A.; Fitchett, D.; Magder, S. Cardiac versus noncardiac limits to exercise after heart transplantation. Am. Heart J. 1998, 135, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Magder, S. Central venous pressure monitoring. Curr. Opin. Crit. Care 2006, 12, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, P.; Cooper, D.; Webb, S.; Myburgh, J.; Seppelt, I.; Peake, S.; Joyce, C.; Stephens, D.; Turner, A.; French, C.; et al. The Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2008. An Assessment by the Australian and New Zealand Intensive Care Society; SAGE Publications Sage UK: London, UK, 2008; pp. 149–151. [Google Scholar]
- Stevenson, L.W.; Perloff, J.K. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 1989, 261, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Boldt, J.; Lenz, M.; Kumle, B.; Papsdorf, M. Volume replacement strategies on intensive care units: Results from a postal survey. Intensive Care Med. 1998, 24, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, P.; Sarin, S.K. Hepatic venous pressure gradient measurement: Time to learn. Indian J. Gastroenterol. 2008, 27, 74–80. [Google Scholar]
- Koh, C.; Heller, T. Approach to the diagnosis of portal hypertension. Clin. Liver Dis. 2012, 1, 133. [Google Scholar] [CrossRef]
- Castell, D.O. Ascites in cirrhosis: Relative importance of portal hypertension and hypoalbuminemia. Am. J. Dig. Dis. 1967, 12, 916–922. [Google Scholar] [CrossRef]
- Ripoll, C.; Groszmann, R.J.; Garcia-Tsao, G.; Bosch, J.; Grace, N.; Burroughs, A.; Planas, R.; Escorsell, A.; Garcia-Pagan, J.C.; Makuch, R.; et al. Hepatic venous pressure gradient predicts development of hepatocellular carcinoma independently of severity of cirrhosis. J. Hepatol. 2009, 50, 923–928. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, G.; Garcia-Tsao, G.; Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. J. Hepatol. 2006, 44, 217–231. [Google Scholar] [CrossRef]
- Harary, M.; Dolmans, R.G.; Gormley, W.B. Intracranial pressure monitoring—Review and avenues for development. Sensors 2018, 18, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M. Monitoring intracranial pressure in traumatic brain injury. Anesth. Analg. 2008, 106, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Steer, P. Technical aspects of fetal and intrauterine pressure monitoring. In Fetal Physiology and Medicine; Elsevier: Amsterdam, The Netherlands, 1984; pp. 679–711. [Google Scholar]
- Hill, L.; Starling, E. Discussion on the Physiology of the Intra-Ocular Pressure; SAGE Publications: Newbury Park, CA, USA, 1913. [Google Scholar]
- Cunningham, A.J.; Barry, P. Intraocular pressure-physiology and implications for anaesthetic management. Can. Anaesth. Soc. J. 1986, 33, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, D. Adler’s Physiology of the Eye: Clinical Application. Br. J. Ophthalmol. 1982, 66, 743. [Google Scholar] [CrossRef] [Green Version]
- ABOUL-EISH, E. Physiology of the eye pertinent to anesthesia. Int. Ophthalmol. Clin. 1973, 13, 1–20. [Google Scholar]
- Liu, J.H.; Kripke, D.F.; Twa, M.; E Hoffman, R.; Mansberger, S.; Rex, K.M.; Girkin, C.; Weinreb, R.N. Twenty-four–hour pattern of intraocular pressure in the aging population. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2912–2917. [Google Scholar]
- Weih, L.M.; Mukesh, B.N.; Mccarty, C.A.; Taylor, H.R. Association of demographic, familial, medical, and ocular factors with intraocular pressure. Arch. Ophthalmol. 2001, 119, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Langham, M.E. Aqueous humor and control of intra-ocular pressure. Physiol. Rev. 1958, 38, 215–242. [Google Scholar] [CrossRef]
- Buckingham, T.; Young, R. The rise and fall of intra-ocular pressure: The influence of physiological factors. Ophthalmic. Physiol. Opt. 1986, 6, 95–99. [Google Scholar] [CrossRef]
- Klein, B.; Klein, R.; Linton, K. Intraocular pressure in an American community. Beaver Dam Eye Study. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2224–2228. [Google Scholar]
- Tielsch, J.M.; Katz, J.; Quigley, H.A.; Javitt, J.C.; Sommer, A. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. Ophthalmology 1995, 102, 48–53. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Leske, M.C. Associations with intraocular pressure in the Barbados Eye Study. Arch. Ophthalmol. 1997, 115, 1572–1576. [Google Scholar] [CrossRef]
- Pai, S.R.; Shenoy, J.P.; Shivakumar, J.; Kole, S.B. Postmenopausal intraocular pressure changes in South Indian females. J. Clin. Diagn. Res. JCDR 2013, 7, 1322. [Google Scholar]
- Qureshi, I.A. Effects of exercise on intraocular pressure in physically fit subjects. Clin. Exp. Pharmacol. Physiol. 1996, 23, 648–652. [Google Scholar] [CrossRef]
- McDANIEL, D.R.; Tribbey, C.L.; Tobias, G.S. Effects of moderate exercise on intraocular pressure. Am. J. Optom. Physiol. Opt. 1983, 60, 154–157. [Google Scholar] [CrossRef]
- Dickerman, R.D.; Smith, G.H.; Langham-Roof, L.; McConathy, W.J.; East, J.W.; Smith, A.B. Intra-ocular pressure changes during maximal isometric contraction: Does this reflect intra-cranial pressure or retinal venous pressure? Neurol. Res. 1999, 21, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, R.; Caregnato, R.C.A. Intra-abdominal pressure: An integrative review. Einstein 2016, 14, 423–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheatham, M.L.; Safcsak, K. Intra-abdominal hypertension and abdominal compartment syndrome: The journey forward. Am. Surg. 2011, 77, S1. [Google Scholar]
- Harman, P.K.; Kron, I.L.; McLACHLAN, H.D.; Freedlender, A.E.; Nolan, S.P. Elevated intra-abdominal pressure and renal function. Ann. Surg. 1982, 196, 594. [Google Scholar] [CrossRef]
- Rosemary, K. Intra-abdominal hypertension and abdominal compartment syndrome. Crit. Care Nurse 2012, 32, 19–31. [Google Scholar]
- Starkopf, J.; Tamme, K.; Blaser, A.R. Should we measure intra-abdominal pressures in every intensive care patient? Ann. Intensive Care 2012, 2, S9. [Google Scholar] [CrossRef] [Green Version]
- Sugrue, M.; De Waele, J.J.; De Keulenaer, B.L.; Roberts, D.J.; Malbrain, M.L. A user’s guide to intra-abdominal pressure measurement. Anaesthesiol. Intensive Ther. 2015, 47, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luckianow, G.M.; Ellis, M.; Governale, D.; Kaplan, L.J. Abdominal compartment syndrome: Risk factors, diagnosis, and current therapy. Crit. Care Res. Pract. 2012, 2012, 908169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheatham, M.L. Abdominal compartment syndrome: Pathophysiology and definitions. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 10–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Laet, I.; Malbrain, M. Current insights in intra-abdominal hypertension and abdominal compartment syndrome. Med. Intensiv. 2007, 31, 88–99. [Google Scholar] [CrossRef]
- Li-wei, H.L.; Saeed, M.; Talmor, D.; Mark, R.; Malhotra, A. Methods of blood pressure measurement in the ICU. Crit. Care Med. 2013, 41, 34. [Google Scholar]
- Garland, A. Arterial lines in the ICU: A call for rigorous controlled trials. Chest 2014, 146, 1155–1158. [Google Scholar] [CrossRef]
- Bur, A.; Herkner, H.; Vlcek, M.; Woisetschläger, C.; Derhaschnig, U.; Karth, G.D.; Laggner, A.N.; Hirschl, M.M. Factors influencing the accuracy of oscillometric blood pressure measurement in critically ill patients. Crit. Care Med. 2003, 31, 793–799. [Google Scholar] [CrossRef]
- Mani, B.C.; Chaudhari, S.S. Right Heart Cardiac Catheterization. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Callan, P.; Clark, A.L. Right heart catheterisation: Indications and interpretation. Heart 2016, 102, 147–157. [Google Scholar] [CrossRef]
- Kubiak, G.M.; Ciarka, A.; Biniecka, M.; Ceranowicz, P. Right heart catheterization—Background, physiological basics, and clinical implications. J. Clin. Med. 2019, 8, 1331. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.; Markham, R.; Savage, M.; Wong, Y.-W.; Walters, D. Right heart catheterisation: How to do it. Heart Lung Circ. 2019, 28, e71–e78. [Google Scholar] [CrossRef]
- Weaver, W.F. Right heart catheterization. Catheter. Cardiovasc. Diagn. 1991, 24, 151. [Google Scholar] [CrossRef] [PubMed]
- Craig, M.; Pereira, N.L. Right heart catheterization and risk stratification in advanced heart failure. Curr. Heart Fail. Rep. 2006, 3, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Cochran, J.M.; Alam, A.; Guerrero-Miranda, C.Y. Importance of right heart catheterization in advanced heart failure management. Rev. Cardiovasc. Med. 2022, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M.; Prestinenzi, P.; Potena, L. Right Heart Catheterization in Patients with Advanced Heart Failure: When to Perform? How to Interpret? Heart Fail. Clin. 2021, 17, 647–660. [Google Scholar] [CrossRef]
- de Groote, P.; Delobelle, M.; Hebbar, E.; Mercier, T.; Fertin, M.; Goéminne, C.; Pentiah, A.D.; Vincentelli, A.; Bauters, C.; Lamblin, N. Right heart catheterization in advanced systolic heart failure. What are the most useful haemodynamic parameters for risk stratification? Arch. Cardiovasc. Dis. 2022, 115, 169–178. [Google Scholar] [CrossRef]
- Dreyfus, G.D.; Essayagh, B. Right-Heart Catheterization of Severe Functional Tricuspid Regurgitation: A Step forward in Reducing Its Pervasive Undertreatment? American College of Cardiology Foundation: Washington, DC, USA, 2021; pp. 39–40. [Google Scholar]
- Kałużna-Oleksy, M.; Araszkiewicz, A.; Migaj, J.; Lesiak, M.; Straburzyńska-Migaj, E. “From right to left”: The role of right heart catheterization in the diagnosis and management of left heart diseases. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2017, 26, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Swan, H.; Ganz, W. Measurement of right atrial and pulmonary arterial pressures and cardiac output: Clinical application of hemodynamic monitoring. Adv. Intern. Med. 1982, 27, 453–473. [Google Scholar]
- Li, X.; Kang, N.; Qi, X.; Huang, Y. Artificial intelligence in the diagnosis of cirrhosis and portal hypertension. J. Med. Ultrason. 2022, 49, 371–379. [Google Scholar] [CrossRef]
- Monescillo, A.; Martínez-Lagares, F.; Ruiz-Del-Arbol, L.; Sierra, A.; Guevara, C.; Jiménez, E.; Marrero, J.M.; Buceta, E.; Sánchen, J.; Castellot, A.; et al. Influence of portal hypertension and its early decompression by TIPS placement on the outcome of variceal bleeding. Hepatology 2004, 40, 793–801. [Google Scholar] [CrossRef]
- Ripoll, C.; Groszmann, R.; Garcia–Tsao, G.; Grace, N.; Burroughs, A.; Planas, R.; Escorsell, A.; Garcia–Pagan, J.C.; Makuch, R.; Patch, D.; et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007, 133, 481–488. [Google Scholar] [CrossRef]
- Thalheimer, U.; Mela, M.; Patch, D.; Burroughs, A.K. Monitoring target reduction in hepatic venous pressure gradient during pharmacological therapy of portal hypertension: A close look at the evidence. Gut 2004, 53, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Tsao, G.; Abraldes, J.G.; Berzigotti, A.; Bosch, J. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology 2017, 65, 310–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Franchis, R. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J. Hepatol. 2015, 63, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shung, D.L.; Garcia-Tsao, G. Liver Capsule: Portal Hypertension and Varices: Pathogenesis, Stages, and Management. Hepatology 2017, 65, 1038. [Google Scholar] [CrossRef] [Green Version]
- Lucidi, R.; Chez, R.; Creasy, R. The clinical use of intrauterine pressure catheters. J. Matern.-Fetal Med. 2001, 10, 420–422. [Google Scholar] [CrossRef]
- Sonig, A.; Jumah, F.; Raju, B.; Patel, N.V.; Gupta, G.; Nanda, A. The historical evolution of intracranial pressure monitoring. World Neurosurg. 2020, 138, 491–497. [Google Scholar] [CrossRef]
- Raboel, P.H.; Bartek, J.; Andresen, M.; Bellander, B.M.; Romner, B. Intracranial pressure monitoring: Invasive versus non-invasive methods—A review. Crit. Care Res. Pract. 2012, 2012, 950393. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.-C.; Tu, Y.-K.; Chen, Y.-S.; Lien, L.-M.; Huang, S.-J. Subdural intracranial pressure monitoring in severe head injury: Clinical experience with the Codman MicroSensor. Surg. Neurol. 2006, 66, S8–S13. [Google Scholar] [CrossRef]
- Koskinen, L.-O.D.; Olivecrona, M. Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system. Neurosurgery 2005, 56, 693–698. [Google Scholar] [CrossRef]
- Citerio, G.; Piper, I.; Chambers, I.R.; Galli, D.; Enblad, P.; Kiening, K.; Ragauskas, A.; Sahuquillo, J.; Gregson, B. Multicenter clinical assessment of the Raumedic Neurovent-P intracranial pressure sensor: A report by the BrainIT group. Neurosurgery 2008, 63, 1152–1158. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.-M.; Beck, J.; Zimmermann, M.; Seifert, V.; Raabe, A. Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery 2003, 52, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Bekar, A.; Doğan, S.; Abaş, F.; Caner, B.; Korfalı, G.; Kocaeli, H.; Yılmazlar, S. Risk factors and complications of intracranial pressure monitoring with a fiberoptic device. J. Clin. Neurosci. 2009, 16, 236–240. [Google Scholar] [CrossRef]
- Gelabert-González, M.; Ginesta-Galan, V.; Sernamito-García, R.; Allut, A.G.; Bandin-Diéguez, J.; Rumbo, R.M. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir. 2006, 148, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, A.W.; Roberts, D.J.; Jaeschke, R.; De Waele, J.J.; De Keulenaer, B.L.; Duchesne, J.; Bjorck, M.; Leppäniemi, A.; Ejike, J.C.; Sugrue, M.; et al. Methodological background and strategy for the 2012–2013 updated consensus definitions and clinical practice guidelines from the abdominal compartment society. Anaesthesiol. Intensive Ther. 2015, 47, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Alijani, A.; Frank, T.; Hanna, G.B.; Cuschieri, A. Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg. Endosc. Other Interv. Tech. 2006, 20, 987–990. [Google Scholar] [CrossRef]
- Adedinsewo, D.A.; Lesser, E.; Yamani, M.H.; Carter, R. An Innovative Application of Artificial Intelligence Techniques and Machine Learning in Diagnostic Evaluation of Pulmonary Hypertension. Circulation 2019, 140 (Suppl. S1), A15999. [Google Scholar]
- Zhu, F.; Xu, D.; Liu, Y.; Lou, K.; He, Z.; Zhang, H.; Sheng, Y.; Yang, R.; Li, X.; Kong, X.; et al. Machine learning for the diagnosis of pulmonary hypertension. Kardiologiia 2020, 60, 96–101. [Google Scholar] [CrossRef]
- Leha, A.; Hellenkamp, K.; Unsöld, B.; Mushemi-Blake, S.; Shah, A.M.; Hasenfuß, G.; Seidler, T. A machine learning approach for the prediction of pulmonary hypertension. PLoS ONE 2019, 14, e0224453. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Omae, Y.; Fukamachi, D.; Nagashima, K.; Mizobuchi, S.; Kakimoto, Y.; Toyotani, J.; Okumura, Y. Quantitative estimation of pulmonary artery wedge pressure from chest radiographs by a regression convolutional neural network. Heart Vessel. 2022, 37, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Fortmeier, V.; Lachmann, M.; Körber, M.I.; Unterhuber, M.; von Scheidt, M.; Rippen, E.; Harmsen, G.; Gerçek, M.; Friedrichs, K.P.; Roder, F.; et al. Solving the pulmonary hypertension paradox in patients with severe tricuspid regurgitation by employing artificial intelligence. Cardiovasc. Interv. 2022, 15, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Shandhi, M.H.; Fan, J.; Heller, J.A.; Etemadi, M.; Klein, L.; Inan, O.T. Estimation of changes in intracardiac hemodynamics using wearable seismocardiography and machine learning in patients with heart failure: A feasibility study. IEEE Trans. Biomed. Eng. 2022, 69, 2443–2455. [Google Scholar] [CrossRef]
- Hardacre, C.J.; A Robertshaw, J.; Barratt, S.L.; Adams, H.L.; Ross, R.V.M.; Robinson, G.R.; Suntharalingam, J.; Pauling, J.D.; Rodrigues, J.C.L. Diagnostic test accuracy of artificial intelligence analysis of cross-sectional imaging in pulmonary hypertension: A systematic literature review. Br. J. Radiol. 2021, 94, 20210332. [Google Scholar] [CrossRef]
- Jones, E.; Randall, E.B.; Hummel, S.L.; Cameron, D.M.; Beard, D.A.; Carlson, B.E. Phenotyping heart failure using model-based analysis and physiology-informed machine learning. J. Physiol. 2021, 599, 4991–5013. [Google Scholar] [CrossRef]
- Antes, S.; Tschan, C.A.; Heckelmann, M.; Breuskin, D.; Oertel, J. Telemetric intracranial pressure monitoring with the Raumedic Neurovent P-tel. World Neurosurg. 2016, 91, 133–148. [Google Scholar] [CrossRef]
- Antes, S.; Stadie, A.; Müller, S.; Linsler, S.; Breuskin, D.; Oertel, J. Intracranial pressure–guided shunt valve adjustments with the Miethke sensor reservoir. World Neurosurg. 2018, 109, e642–e650. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-H.; Jeong, Y.-S.; Martin, G.L.; Choi, M.S.; Kang, Y.J.; Lee, M.; Cho, A.; Koo, B.S.; Cho, S.H.; Kim, S.H. Prediction of blood pressure changes associated with abdominal pressure changes during robotic laparoscopic low abdominal surgery using deep learning. PLoS ONE 2022, 17, e0269468. [Google Scholar] [CrossRef]
- Chen, Y.; Shlofmitz, E.; Khalid, N.; Bernardo, N.L.; Ben-Dor, I.; Weintraub, W.S.; Waksman, R. Right heart catheterization-related complications: A review of the literature and best practices. Cardiol. Rev. 2020, 28, 36–41. [Google Scholar] [CrossRef]
- D’Alto, M.; Dimopoulos, K.; Coghlan, J.G.; Kovacs, G.; Rosenkranz, S.; Naeije, R. Right heart catheterization for the diagnosis of pulmonary hypertension: Controversies and practical issues. Heart Fail. Clin. 2018, 14, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Wilmink, F.A.; Wilms, F.F.; Heydanus, R.; Mol, B.W.J.; Papatsonis, D.N.M. Fetal complications after placement of an intrauterine pressure catheter: A report of two cases and review of the literature. J. Matern.-Fetal Neonatal Med. 2008, 21, 880–883. [Google Scholar] [CrossRef] [PubMed]
- Moni, S.S.; Kirshenbaum, R.; Comfort, L.; Kuba, K.; Wolfe, D.; Xie, X.; Negassa, A.; Bernstein, P.S. Noninvasive monitoring of uterine electrical activity among patients with obesity: A new external monitoring device. Am. J. Obstet. Gynecol. MFM 2021, 3, 100375. [Google Scholar] [CrossRef]
- Frolova, A.I.; Stout, M.J.; Carter, E.B.; Macones, G.A.; Cahill, A.G.; Raghuraman, N. Internal fetal and uterine monitoring in obese patients and maternal obstetrical outcomes. Am. J. Obstet. Gynecol. MFM 2021, 3, 100282. [Google Scholar] [CrossRef]
- Lind, B.K. The frequency of extramembranous placement of intrauterine pressure catheters. Prim. Care Update Ob/Gyns 1998, 5, 185. [Google Scholar] [CrossRef]
- Dowdle, M.A. Comparison of two intrauterine pressure catheters during labor. J. Reprod. Med.-Chic. 2003, 48, 501–505. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Krittanawong, C.; Bomback, A.S.; Baber, U.; Bangalore, S.; Messerli, F.H.; Tang, W.H.W. Future direction for using artificial intelligence to predict and manage hypertension. Curr. Hypertens. Rep. 2018, 20, 75. [Google Scholar] [CrossRef]
- Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef]
- Ye, C.; Fu, T.; Hao, S.; Zhang, Y.; Wang, O.; Jin, B.; Xia, M.; Liu, M.; Zhou, X.; Wu, Q.; et al. Prediction of incident hypertension within the next year: Prospective study using statewide electronic health records and machine learning. J. Med. Internet Res. 2018, 20, e22. [Google Scholar] [CrossRef]
- Tsoi, K.; Yiu, K.; Lee, H.; Cheng, H.-M.; Wang, T.-D.; Tay, J.-C.; Teo, B.W.; Turana, Y.; Soenarta, A.A.; Sogunuru, G.P.; et al. Applications of artificial intelligence for hypertension management. J. Clin. Hypertens. 2021, 23, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Völzke, H.; Fung, G.; Ittermann, T.; Yu, S.; Baumeister, S.E.; Dörr, M.; Lieb, W.; Völker, U.; Linneberg, A.; Jørgensen, T.; et al. A new, accurate predictive model for incident hypertension. J. Hypertens. 2013, 31, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- Needham, C.J.; Bradford, J.; Bulpitt, A.J.; Westhead, D. A primer on learning in Bayesian networks for computational biology. PLoS Comput. Biol. 2007, 3, e129. [Google Scholar] [CrossRef] [PubMed]
- Pessana, F.; Venialgo, E.; Rubstein, J.; Furfaro, A. Assessment of human instantaneous arterial diameter using B-mode ultrasound imaging and artificial neural networks: Determination of wall mechanical properties. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, San Diego, CA, USA, 31 August–4 September 2010. [Google Scholar]
- Gariepy, J.; Massonneau, M.; Levenson, J.; Heudes, D.; Simon, A. Evidence for in vivo carotid and femoral wall thickening in human hypertension. Groupe de Prévention Cardio-vasculaire en Médecine du Travail. Hypertension 1993, 22, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Armentano, R.L.; Graf, S.; Barra, J.G.; Velikovsky, G.; Baglivo, H.; Sánchez, R.; Simon, A.; Pichel, R.H.; Levenson, J. Carotid wall viscosity increase is related to intima-media thickening in hypertensive patients. Hypertension 1998, 31, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Graf, S.; Gariepy, J.; Massonneau, M.; Armentano, R.L.; Mansour, S.; Barra, J.G.; Simon, A.; Levenson, J. Experimental and clinical validation of arterial diameter waveform and intimal media thickness obtained from B-mode ultrasound image processing. Ultrasound Med. Biol. 1999, 25, 1353–1363. [Google Scholar] [CrossRef]
- D’Agostino Sr, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO PEN Protocol 1. Prevention of Heart Attacks, Strokes and Kidney Disease through Integrated Management of Diabetes and Hypertension; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Jamthikar, A.D.; Gupta, D.; Johri, A.M.; Mantella, L.E.; Saba, L.; Kolluri, R.; Sharma, A.M.; Viswanathan, V.; Nicolaides, A.; Suri, J.S. Low-cost office-based cardiovascular risk stratification using machine learning and focused carotid ultrasound in an Asian-Indian cohort. J. Med. Syst. 2020, 44, 208. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhang, Y.-T. Pulse transit time technique for cuffless unobtrusive blood pressure measurement: From theory to algorithm. Biomed. Eng. Lett. 2019, 9, 37–52. [Google Scholar] [CrossRef]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef] [Green Version]
- Man, P.-K.; Cheung, K.-L.; Sangsiri, N.; Shek, W.J.; Wong, K.-L.; Chin, J.-W.; Chan, T.-T.; So, R.H.-Y. Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. Healthcare 2022, 10, 2113. [Google Scholar] [CrossRef] [PubMed]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans. Biomed. Eng. 2016, 64, 859–869. [Google Scholar] [CrossRef]
- Williams, B.; Poulter, N.R.; Brown, M.J.; Davis, M.; McInnes, G.T.; Potter, J.F.; Sever, P.S.; Thom, S.M. British Hypertension Society guidelines for hypertension management 2004 (BHS-IV): Summary. BMJ 2004, 328, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, J.; Fácila, L.; Gracia-Baena, J.M.; Zangróniz, R.; Alcaraz, R.; Rieta, J.J. The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography. Biosensors 2022, 12, 289. [Google Scholar] [CrossRef]
- Soh, D.C.K.; Ng, E.; Jahmunah, V.; Oh, S.L.; San, T.R.; Acharya, U.R. A computational intelligence tool for the detection of hypertension using empirical mode decomposition. Comput. Biol. Med. 2020, 118, 103630. [Google Scholar] [CrossRef]
- Baker, S.; Xiang, W.; Atkinson, I. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Comput. Methods Prog. Biomed. 2021, 207, 106191. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yang, D.; Barszczyk, A.; Vempala, N.; Wei, J.; Wu, S.J.; Zheng, P.P.; Fu, G.; Lee, K.; Feng, Z.-P. Smartphone-based blood pressure measurement using transdermal optical imaging technology. Circ. Cardiovasc. Imaging 2019, 12, e008857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Jiang, Y.; Zhi, H. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, J.C.T.d.B.; Cerulli, M.; Ng, P. A strategy for determination of systolic, mean and diastolic blood pressures from oscillometric pulse profiles. In Computers in Cardiology 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 27. [Google Scholar]
- Mauck, G.W.; Smith, C.R.; Geddes, L.A.; Bourland, J.D. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure—Part II. J. Biomech. Eng. 1980, 102, 28–33. [Google Scholar] [CrossRef]
- Sapiński, A. Standard algorithm of blood-pressure measurement by the oscillometric method. Med. Biol. Eng. Comput. 1992, 30, 671. [Google Scholar] [CrossRef]
- Geddes, L.A.; Voelz, M.; Combs, C.; Reiner, D.; Babbs, C.F. Characterization of the oscillometric method for measuring indirect blood pressure. Ann. Biomed. Eng. 1982, 10, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Balestrieri, E.; Rapuano, S. Instruments and methods for calibration of oscillometric blood pressure measurement devices. IEEE Trans. Instrum. Meas. 2010, 59, 2391–2404. [Google Scholar] [CrossRef]
- Lee, S.; Bolic, M.; Groza, V.Z.; Dajani, H.R.; Rajan, S. Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approaches. IEEE Trans. Instrum. Meas. 2011, 60, 3405–3415. [Google Scholar] [CrossRef]
- Chen, S.; Groza, V.Z.; Bolic, M.; Dajani, H.R. Assessment of algorithms for oscillometric blood pressure measurement. In Proceedings of the 2009 IEEE Instrumentation and Measurement Technology Conference, Singapore, 5–7 May 2009. [Google Scholar]
- Argha, A.; Celler, B.G.; Lovell, N.H. Artificial intelligence based blood pressure estimation from auscultatory and oscillometric waveforms: A methodological review. IEEE Rev. Biomed. Eng. 2020, 15, 152–168. [Google Scholar] [CrossRef]
- Picone, D.S.; Schultz, M.G.; Otahal, P.; Aakhus, S.; Al-Jumaily, A.M.; Black, J.A.; Bos, W.J.; Chambers, J.B.; Chen, C.H.; Cheng, H.M.; et al. Accuracy of cuff-measured blood pressure: Systematic reviews and meta-analyses. J. Am. Coll. Cardiol. 2017, 70, 572–586. [Google Scholar] [CrossRef]
- Lee, S.; Rajan, S.; Dajani, H.R.; Groza, V.Z.; Bolic, M. Determination of blood pressure using Bayesian approach. In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Hangzhou, China, 10–12 May 2011. [Google Scholar]
- Lee, S.; Chang, J.-H.; Nam, S.W.; Lim, C.; Rajan, S.; Dajani, H.R.; Groza, V.Z. Oscillometric blood pressure estimation based on maximum amplitude algorithm employing Gaussian mixture regression. IEEE Trans. Instrum. Meas. 2013, 62, 3387–3389. [Google Scholar] [CrossRef]
- Lim, P.K.; Ng, S.-C.; Jassim, W.A.; Redmond, S.J.; Zilany, M.; Avolio, A.; Lim, E.; Tan, M.P.; Lovell, N.H. Improved measurement of blood pressure by extraction of characteristic features from the cuff oscillometric waveform. Sensors 2015, 15, 14142–14161. [Google Scholar] [CrossRef] [Green Version]
- Argha, A.; Wu, J.; Su, S.W.; Celler, B.G. Blood pressure estimation from beat-by-beat time-domain features of oscillometric waveforms using deep-neural-network classification models. IEEE Access 2019, 7, 113427–113439. [Google Scholar] [CrossRef]
- Bengio, Y. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition; Book Review: Hoboken, NJ, US, 2000. [Google Scholar]
- Argha, A.; Celler, B.G. Blood pressure estimation from time-domain features of oscillometric waveforms using long short-term memory recurrent neural networks. IEEE Trans. Instrum. Meas. 2019, 69, 3614–3622. [Google Scholar] [CrossRef]
- Pickering, T.G. Principles and techniques of blood pressure measurement. Cardiol. Clin. 2002, 20, 207–223. [Google Scholar] [CrossRef] [Green Version]
- Landgraf, J.; Wishner, S.H.; Kloner, R.A. Comparison of automated oscillometric versus auscultatory blood pressure measurement. Am. J. Cardiol. 2010, 106, 386–388. [Google Scholar] [CrossRef]
- Chang, J.-H.; Doh, I. Deep learning-based robust automatic non-invasive measurement of blood pressure using Korotkoff sounds. Sci. Rep. 2021, 11, 23365. [Google Scholar] [CrossRef]
- Celler, B.G.; Le, P.; Basilakis, J.; Ambikairajah, E. Improving the quality and accuracy of non-invasive blood pressure measurement by visual inspection and automated signal processing of the Korotkoff sounds. Physiol. Meas. 2017, 38, 1006. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.H.; Bauer, J.H. A review of common errors in the indirect measurement of blood pressure: Sphygmomanometry. Arch. Intern. Med. 1993, 153, 2741–2748. [Google Scholar] [CrossRef] [PubMed]
- Babbs, C.F. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements. J. Am. Soc. Hypertens. 2015, 9, 935–950.e3. [Google Scholar] [CrossRef] [Green Version]
- Celler, B.G.; Basilakis, J.; Goozee, K.; Ambikairajah, E. Non-Invasive measurement of blood pressure-Why we should look at BP traces rather than listen to Korotkoff sounds. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015. [Google Scholar]
- Ankışhan, H. Blood pressure prediction from speech recordings. Biomed. Signal Process. Control 2020, 58, 101842. [Google Scholar] [CrossRef]
- Lee, S.; Ahmad, A.; Jeon, G. Combining bootstrap aggregation with support vector regression for small blood pressure measurement. J. Med. Syst. 2018, 42, 63. [Google Scholar] [CrossRef]
- Ibrahim, B.; Jafari, R. Cuffless blood pressure monitoring from a wristband with calibration-free algorithms for sensing location based on bio-impedance sensor array and autoencoder. Sci. Rep. 2022, 12, 319. [Google Scholar] [CrossRef]
- Wang, T.-W.; Syu, J.-Y.; Chu, H.-W.; Sung, Y.-L.; Chou, L.; Escott, E.; Escott, O.; Lin, T.-T.; Lin, S.-F. Intelligent bio-impedance system for personalized continuous blood pressure measurement. Biosensors 2022, 12, 150. [Google Scholar] [CrossRef]
- Luštrek, M.; Bohanec, M.; Barca, C.C.; Ciancarelli, M.C.; Clays, E.; Dawodu, A.A.; Derboven, J.; De Smedt, D.; Dovgan, E.; Lampe, J.; et al. A personal health system for self-management of congestive heart failure (HeartMan): Development, technical evaluation, and proof-of-concept randomized controlled trial. JMIR Med. Inform. 2021, 9, e24501. [Google Scholar] [CrossRef]
- Huang, W.; Ying, T.W.; Chin, W.L.C.; Baskaran, L.; Marcus, O.E.H.; Yeo, K.K.; Kiong, N.S. Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction. Sci. Rep. 2022, 12, 1033. [Google Scholar] [CrossRef]
- Zhou, W.; Chan, Y.E.; Foo, C.S.; Zhang, J.; Teo, J.X.; Davila, S.; Huang, W.; Yap, J.; Cook, S.; Tan, P.; et al. High-resolution digital phenotypes from consumer wearables and their applications in machine learning of cardiometabolic risk markers: Cohort Study. J. Med. Internet Res. 2022, 24, e34669. [Google Scholar] [CrossRef]
- Zhan, Z.; Lin, R.; Tran, V.-T.; An, J.; Wei, Y.; Du, H.; Tran, T.; Lu, W. Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl. Mater. Interfaces 2017, 9, 37921–37928. [Google Scholar] [CrossRef] [PubMed]
- Holz, C.; Wang, E.J. Glabella: Continuously sensing blood pressure behavior using an unobtrusive wearable device. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, New York, NY, USA, 11 September 2017; Volume 1, pp. 1–23. [Google Scholar]
- Chiang, P.-H.; Wong, M.; Dey, S. Using wearables and machine learning to enable personalized lifestyle recommendations to improve blood pressure. IEEE J. Transl. Eng. Health Med. 2021, 9, 2700513. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-Y.; Kim, H.; Ham, E.-G.; Yang, H.; Kim, J.-H. Machine Learning-based Wearable Bio-processor for Real-Time Blood Pressure Estimation. In Proceedings of the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February 2022. [Google Scholar]
- Ma, K.S.-K.; Hao, H.; Huang, H.-C.; Tang, Y.-H. Entropy-facilitated machine learning for blood pressure estimation using electrocardiogram and photoplethysmogram in a wearable device. In Proceedings of the 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 23–25 October 2021. [Google Scholar]
- Sheeraz, M.; Aslam, A.R.; Hafeez, N.; Heidari, H.; Bin Altaf, M.A. A Wearable High Blood Pressure Classification Processor Using Photoplethysmogram Signals through Power Spectral Density Features. In Proceedings of the 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022. [Google Scholar]
- Marozas, M.; Zykus, R.; Sakalauskas, A.; Kupčinskas, L.; Lukoševičius, A. Noninvasive evaluation of portal hypertension using a supervised learning technique. J. Healthc. Eng. 2017, 2017, 6183714. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep learning: A primer for radiologists. Radiographics 2017, 37, 2113–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ning, Z.; Örmeci, N.; An, W.; Yu, Q.; Han, K.; Huang, Y.; Liu, D.; Liu, F.; Li, Z.; et al. Deep convolutional neural network-aided detection of portal hypertension in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2998–3007.e5. [Google Scholar] [CrossRef]
- Bosch, J.; Chung, C.; Carrasco-Zevallos, O.M.; Harrison, S.A.; Abdelmalek, M.F.; Shiffman, M.L.; Rockey, D.C.; Shanis, Z.; Juyal, D.; Pokkalla, H.; et al. A machine learning approach to liver histological evaluation predicts clinically significant portal hypertension in NASH cirrhosis. Hepatology 2021, 74, 3146–3160. [Google Scholar] [CrossRef]
- Bellner, J.; Romner, B.; Reinstrup, P.; Kristiansson, K.-A.; Ryding, E.; Brandt, L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg. Neurol. 2004, 62, 45–51. [Google Scholar] [CrossRef]
- Voulgaris, S.G.; Partheni, M.; Kaliora, H.; Haftouras, N.; Pessach, I.S.; Polyzoidis, K.S. Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2005, 11, CR49–CR52. [Google Scholar]
- Moreno, J.A.; Mesalles, E.; Gener, J.; Tomasa, A.; Ley, A.; Roca, J.; Fernández-Llamazares, J. Evaluating the outcome of severe head injury with transcranial Doppler ultrasonography. Neurosurg. Focus 2000, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Behrens, A.; Lenfeldt, N.; Ambarki, K.; Malm, J.; Eklund, A.; Koskinen, L.O. Transcranial Doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery 2010, 66, 1050–1057. [Google Scholar] [CrossRef]
- Brandi, G.; Béchir, M.; Sailer, S.; Haberthür, C.; Stocker, R.; Stover, J.F. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir. 2010, 152, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Geeraerts, T.; Launey, Y.; Martin, L.; Pottecher, J.; Vigué, B.; Duranteau, J.; Benhamou, D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007, 33, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Kimberly, H.H.; Shah, S.; Marill, K.; Noble, V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad. Emerg. Med. 2008, 15, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Soldatos, T.; Karakitsos, D.; Chatzimichail, K.; Papathanasiou, M.; Gouliamos, A.; Karabinis, A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit. Care 2008, 12, R67. [Google Scholar] [CrossRef] [Green Version]
- Rajajee, V.; Vanaman, M.; Fletcher, J.J.; Jacobs, T.L. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit. Care 2011, 15, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.W.; Aleman, T.S.; Xu, W.; Ying, G.-S.; Pan, W.; Liu, G.T.; Lang, S.-S.; Heuer, G.G.; Storm, P.B.; Bartlett, S.P.; et al. Evaluation of optical coherence tomography to detect elevated intracranial pressure in children. JAMA Ophthalmol. 2017, 135, 320–328. [Google Scholar] [CrossRef]
- Alperin, N.J.; Lee, S.H.; Loth, F.; Raksin, P.B.; Lichtor, T. MR-Intracranial pressure (ICP): A method to measure intracranial elastance and pressure noninvasively by means of MR imaging: Baboon and human study. Radiology 2000, 217, 877–885. [Google Scholar] [CrossRef]
- Pappu, S.; Lerma, J.; Khraishi, T. Brain CT to assess intracranial pressure in patients with traumatic brain injury. J. Neuroimaging 2016, 26, 37–40. [Google Scholar] [CrossRef]
- Claassen, J.; Carhuapoma, J.R.; Kreiter, K.T.; Du, E.Y.; Connolly, E.S.; Mayer, S.A. Global cerebral edema after subarachnoid hemorrhage: Frequency, predictors, and impact on outcome. Stroke 2002, 33, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Lang, E.W.; Paulat, K.; Witte, C.; Zolondz, J.; Mehdorn, H.M. Noninvasive intracranial compliance monitoring: Technical note and clinical results. J. Neurosurg. 2003, 98, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, A.; Marchbanks, R.J.; Burge, D.M.; Martin, A.M.; Bateman, D.E.; Pickard, J.D.; Brightwell, A.P. The relationship between intracranial pressure and tympanic membrane displacement. Br. J. Audiol. 1990, 24, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Shimbles, S.; Dodd, C.; Banister, K.; Mendelow, A.D.; Chambers, I.R. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol. Meas. 2005, 26, 1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisén, L. Swelling of the optic nerve head: A staging scheme. J. Neurol. Neurosurg. Psychiatry 1982, 45, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A.J.; Burdon, M.A.; Nightingale, P.G.; Matthews, T.D.; Jacks, A.; Lawden, M.; Sivaguru, A.; Gaskin, B.J.; Rauz, S.; Clarke, C.E.; et al. Rating papilloedema: An evaluation of the Frisén classification in idiopathic intracranial hypertension. J. Neurol. 2012, 259, 1406–1412. [Google Scholar] [CrossRef]
- Selhorst, J.B.; Gudeman, S.K.; Butterworth, J.F.; Harbison, J.W.; Miller, J.D.; Becker, D.P. Papilledema after acute head injury. Neurosurgery 1985, 16, 357–363. [Google Scholar] [CrossRef]
- de APAndrade, R.; Oshiro, H.E.; Miyazaki, C.K.; Hayashi, C.Y.; de Morais, M.A.; Brunelli, R.; Carmo, J.P. A nanometer resolution wearable wireless medical device for non invasive intracranial pressure monitoring. IEEE Sens. J. 2021, 21, 22270–22284. [Google Scholar] [CrossRef]
- Ye, G.; Balasubramanian, V.; Li, J.K.-J.; Kaya, M. Machine learning-based continuous intracranial pressure prediction for traumatic injury patients. IEEE J. Transl. Eng. Health Med. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Ye, G.; Balasubramanian, V.; Li, J.K.; Kaya, M. Intracranial pressure prediction with a recurrent neural network model. In Proceedings of the 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART), Paris/Créteil, France, 8–10 December 2021. [Google Scholar]
- Lee, H.-J.; Kim, H.; Kim, Y.-T.; Won, K.; Czosnyka, M.; Kim, D.-J. Prediction of life-threatening intracranial hypertension during the acute phase of traumatic brain injury using machine learning. IEEE J. Biomed. Health Inform. 2021, 25, 3967–3976. [Google Scholar] [CrossRef]
- Bakker, J.J.; Verhoeven, C.J.; Janssen, P.F.; van Lith, J.M.; van Oudgaarden, E.D.; Bloemenkamp, K.W.; Papatsonis, D.N.; Mol, B.W.J.; van der Post, J.A. Outcomes after internal versus external tocodynamometry for monitoring labor. N. Engl. J. Med. 2010, 362, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes-Gill, B.; Hassan, S.; Mirza, F.G.; Ommani, S.; Himsworth, J.; Solomon, M.; Brown, R.; Schifrin, B.S.; Cohen, W.R. Accuracy and reliability of uterine contraction identification using abdominal surface electrodes. Clin. Med. Insights Women’s Health 2012, 5, CMWH-S10444. [Google Scholar] [CrossRef]
- Rabotti, C.; Mischi, M.; van Laar, J.O.E.H.; Oei, S.G.; Bergmans, J.W.M. Myometrium electromechanical modeling for internal uterine pressure estimation by electrohysterography. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar]
- Vlemminx, M.W.; Thijssen, K.M.; Bajlekov, G.I.; Dieleman, J.P.; Jagt, D.; Oei, S.G. Electrohysterography for uterine monitoring during term labour compared to external tocodynamometry and intra-uterine pressure catheter. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 215, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, W.R.; Hayes-Gill, B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstet. Gynecol. Scand. 2014, 93, 590–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhajna, M.; Sadeh, B.; Yagel, S.; Sohn, C.; Schwartz, N.; Warsof, S.; Zahar, Y.; Reches, A. A novel, cardiac-derived algorithm for uterine activity monitoring in a wearable remote device. Front. Bioeng. Biotechnol. 2022, 10, 1187. [Google Scholar] [CrossRef]
- Schwartz, N.; Mhajna, M.; Moody, H.L.; Zahar, Y.; Shkolnik, K.; Reches, A.; Lowery, C.L. Novel uterine contraction monitoring to enable remote, self-administered nonstress testing. Am. J. Obstet. Gynecol. 2022, 226, 554.e1–554.e12. [Google Scholar] [CrossRef]
- Chittimoju, G.; Yalavarthi, U.D. A comprehensive review on millimeter waves applications and antennas. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Tang, H.; Dai, Y.; Zhao, D.; Sun, Z.; Chen, F.; Zhu, Y.; Liang, H.; Cao, H.; Zhang, L. Deep Domain Adaptation for Predicting Intra-Abdominal Pressure with Multichannel Attention Fusion Radar Chip. Adv. Intell. Syst. 2022, 4, 2100209. [Google Scholar] [CrossRef]
- Gartshore, A.; Kidd, M.; Joshi, L.T. Applications of microwave energy in medicine. Biosensors 2021, 11, 96. [Google Scholar] [CrossRef]
- Szabó, Z.; Park, G.-H.; Hedge, R.; Li, E.-P. A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans. Microw. Theory Tech. 2010, 58, 2646–2653. [Google Scholar] [CrossRef]
- Costanzo, S. Non-invasive microwave sensors for biomedical applications: New design perspectives. Radioengineering 2017, 26, 406–410. [Google Scholar] [CrossRef]
- Mohammad-Zadeh, F.; Taghibakhsh, F.; Kaminska, B. Contactless heart monitoring (CHM). In Proceedings of the 2007 Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 22–26 April 2007. [Google Scholar]
- Yang, L.; Kou, H.; Wang, X.; Zhang, X.; Shang, Z.; Shi, J.; Zhang, G.; Gui, Z. A Microwave Pressure Sensor Loaded with Complementary Split Ring Resonator for High-Temperature Applications. Micromachines 2023, 14, 635. [Google Scholar] [CrossRef]
- El Abbasi, M.K.; Madi, M.; Jelinek, H.F.; Kabalan, K.Y. Wearable Blood Pressure Sensing Based on Transmission Coefficient Scattering for Microstrip Patch Antennas. Sensors 2022, 22, 3996. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Tseng, T.-J.; Wu, C.-Z. Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor. IEEE Trans. Microw. Theory Tech. 2020, 68, 4865–4874. [Google Scholar] [CrossRef]
- Farrugia, J. Dielectric Properties of Standard Liquids at Hyperbaric Pressures; University of Malta: Msida, Malta, 2021. [Google Scholar]
- Misak, A.; Kristek, F.; Tomasova, L.; Grman, M.; Ondriasova, E.; Krizanova, O.; Ondrias, K. Retracted: Mathematical relationships and their consequences between rat pulse waveform parameters and blood pressure during decreasing NO bioavailability. Exp. Physiol. 2017, 102, 164–179. [Google Scholar] [CrossRef]
- Ma, Y.; Choi, J.; Hourlier-Fargette, A.; Xue, Y.; Chung, H.U.; Lee, J.Y.; Wang, X.; Xie, Z.; Kang, D.; Wang, H.; et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl. Acad. Sci. USA 2018, 115, 11144–11149. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, S.; Samaddar, P.; Khan, M.; Damani, D.; Shivaram, S.; Roy, S.; Dey, S.; Mitra, D.; Arunachalam, S.P. On the Non-invasive Sensing of Arterial Waveform and Hematocrit using Microwaves. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022. [Google Scholar]
- Johnson, J.; Kim, C.; Shay, O. Arterial pulse measurement with wearable millimeter wave device. In Proceedings of the 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19–22 May 2019. [Google Scholar]
- Lee, J.Y.; Lin, J.C. A microcprocessor-based noninvasive arterial pulse wave analyzer. IEEE Trans. Biomed. Eng. 1985, BME-32, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Huang, Y.; Li, X.; Pavlides, M.; Liu, D.; Luo, H.; Ding, H.; An, W.; Liu, F.; Zuo, C.; et al. An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension. Cell Rep. Med. 2022, 3, 100563. [Google Scholar] [CrossRef]
- Zheng, J.; Abudayyeh, I.; Mladenov, G.; Struppa, D.; Fu, G.; Chu, H.; Rakovski, C. An artificial intelligence-based noninvasive solution to estimate pulmonary artery pressure. Front. Cardiovasc. Med. 2022, 9, 855356. [Google Scholar] [CrossRef] [PubMed]
- Moinadini, S.; Tajoddini, S.; Hedayat, A.A. Prediction of the central venous pressure in trauma patients on the basis of non-invasive parameters using artificial neural network. Hong Kong J. Emerg. Med. 2021, 28, 152–164. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manga, S.; Muthavarapu, N.; Redij, R.; Baraskar, B.; Kaur, A.; Gaddam, S.; Gopalakrishnan, K.; Shinde, R.; Rajagopal, A.; Samaddar, P.; et al. Estimation of Physiologic Pressures: Invasive and Non-Invasive Techniques, AI Models, and Future Perspectives. Sensors 2023, 23, 5744. https://doi.org/10.3390/s23125744
Manga S, Muthavarapu N, Redij R, Baraskar B, Kaur A, Gaddam S, Gopalakrishnan K, Shinde R, Rajagopal A, Samaddar P, et al. Estimation of Physiologic Pressures: Invasive and Non-Invasive Techniques, AI Models, and Future Perspectives. Sensors. 2023; 23(12):5744. https://doi.org/10.3390/s23125744
Chicago/Turabian StyleManga, Sharanya, Neha Muthavarapu, Renisha Redij, Bhavana Baraskar, Avneet Kaur, Sunil Gaddam, Keerthy Gopalakrishnan, Rutuja Shinde, Anjali Rajagopal, Poulami Samaddar, and et al. 2023. "Estimation of Physiologic Pressures: Invasive and Non-Invasive Techniques, AI Models, and Future Perspectives" Sensors 23, no. 12: 5744. https://doi.org/10.3390/s23125744
APA StyleManga, S., Muthavarapu, N., Redij, R., Baraskar, B., Kaur, A., Gaddam, S., Gopalakrishnan, K., Shinde, R., Rajagopal, A., Samaddar, P., Damani, D. N., Shivaram, S., Dey, S., Mitra, D., Roy, S., Kulkarni, K., & Arunachalam, S. P. (2023). Estimation of Physiologic Pressures: Invasive and Non-Invasive Techniques, AI Models, and Future Perspectives. Sensors, 23(12), 5744. https://doi.org/10.3390/s23125744