Temporal Changes in Air Quality According to Land-Use Using Real Time Big Data from Smart Sensors in Korea
Abstract
:1. Introduction
2. Literature Review
3. Data and Method
4. Results and Discussion
4.1. Classification of Land-Use Group around PAQMSSs
4.2. Changes in Particulate Matter Concentrations according to Land-Use and Time Period
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dominici, F.; Greenstone, M.; Sunstein, C.R. Particulate matter matters. Science 2014, 344, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, S.; Takami, A.; Sakamaki, F.; Mukai, H.; Sugimoto, N.; Shimizu, A.; Bandow, H. Aerial measurement of air pollutants and aerosols during 20–22 March 2001 over the East China Sea. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, Y.-J.; Kim, C.-H. Characteristics of Long-Range Transport of Air Pollutants due to Different Transport Patterns over Northeast Asia. J. Korean Soc. Atmos. Environ. 2012, 28, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.-Y.; Moon, H.-G.; Kang, D.-I.; Cha, J.-G. Analysis of the seasonal concentration differences of particulate matter according to land cover of Seoul—Focusing on forest and urbanized area. J. Environ. Impact Assess. 2018, 27, 635–646. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Styer, P.; McMillan, N.; Gao, F.; Davis, J.; Sacks, J. Effect of outdoor airborne particulate matter on daily death counts. Environ. Health Perspect. 1995, 103, 490–497. [Google Scholar] [CrossRef]
- Schwartz, J.; Dockery, D.W.; Neas, L.M. Is Daily Mortality Associated Specifically with Fine Particles? J. Air Waste Manag. Assoc. 1996, 46, 927–939. [Google Scholar] [CrossRef]
- Bae, H.-J. Effects of Short-term Exposure to PM10 and PM2.5 on Mortality in Seoul. Korean J. Environ. Health Sci. 2014, 40, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-K.; Choi, Y.-J.; Jung, W.-S. An analysis on the distribution characteristics of PM10 concentration and its relation to the death from Asthma in Seoul, Korea. J. Environ. Sci. Int. 2015, 24, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar]
- Lee, S.H.; Park, H.M. Analysis of Characteristics of Fine Particulate Matter Concentrations Using Statistical Methods. Int. J. Highw. Eng. 2019, 21, 109–120. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, N.-H.; Lee, M.-J.; Han, N.-Y.; Lee, H.-C. Analysis of influence of humidity on fine dust sensor through 2k factorial design. Asia Pac. J. Multimed. Serv. Converg. Art Humanit. Sociol. 2019, 9, 765–773. [Google Scholar] [CrossRef]
- Bae, S.H. Smart City Policy Considering Spatial Characteristics. J. Korean Reg. Sci. Assoc. 2019, 35, 25–32. [Google Scholar] [CrossRef]
- Available online: https://iot.airmapkorea.kt.com/info/ (accessed on 23 October 2020).
- Eom, Y.-S.; Park, B.-R.; Kim, S.-G.; Kang, D.-H. A Case Study on Placement of Portable Air Cleaner Considering Outdoor Particle Infiltration into an Elementary School Classroom. J. Korean Inst. Arch. Sustain. Environ. Build. Syst. 2020, 14, 158–170. [Google Scholar] [CrossRef]
- Hwang, Y.-J.; Lee, S.-J.; Do, H.-S.; Lee, Y.-K.; Son, T.-J.; Kwon, T.-G.; Han, J.-W.; Kang, D.-H.; Kim, J.-W. The Analysis of PM10Concentration and the Evaluation of Influences by Meteorological Factors in Ambient Air of Daegu Area. J. Korean Soc. Atmos. Environ. 2009, 25, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Do, H.-S.; Choi, S.-J.; Park, M.-S.; Lim, J.-K.; Kwon, J.-D.; Kim, E.-K.; Song, H.-B. Distribution Characteristics of the Concentration of Ambient PM-10 and PM-2.5 in Daegu Area. J. Korean Soc. Environ. Eng. 2014, 36, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Jeon, C.-W.; Cho, D.; Zhu, L. Exploring the Spatial Heterogeneity of Particulate Matter (PM10) using Geographically Weighted Ridge Regression (GWRR). J. Korean Cartogr. Assoc. 2018, 18, 91–104. [Google Scholar] [CrossRef]
- Hong, S.-H.; Architecture, P.N.U.D.O.L.; Kang, R.-Y.; An, M.-Y.; Kim, J.-S.; Jung, E.-S. Study on the Impact of Roadside Forests on Particulate Matter between Road and Public Openspace in front of Building Site. Korean J. Environ. Ecol. 2018, 32, 323–331. [Google Scholar] [CrossRef]
- Oh, K.-S.; Chung, H.-B. The influence of urban development density on air pollution. J. Korea Plan. Assoc. 2007, 42, 197–210. [Google Scholar]
- Kim, H.-J. Analysis on Relationship between Urban Development Characteristics and Air Pollution level—A Case of Seoul Metropolitan Region. J. Korea Plan. Assoc. 2014, 49, 151. [Google Scholar] [CrossRef]
- Jeong, J.-C. A Spatial Distribution Analysis and Time Series Change of PM10 in Seoul City. J. Korean Assoc. Geogr. Inf. Stud. 2014, 17, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-K.; Choi, Y.-J.; Jung, W.-S. Understanding on Regional Characteristics of Particular Matter in Seoul. J. Environ. Sci. Int. 2017, 26, 55–65. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Wang, S.; Hao, J.; Chai, F. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. J. Environ. Sci. 2012, 24, 87–94. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, C.; Wang, Z.; Feng, K.; Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod. 2017, 142, 1800–1809. [Google Scholar] [CrossRef]
- Choi, T.-Y.; Kang, D.-I.; Cha, J.-G. An analysis of the correlation between Seoul’s monthly particulate matter concentrations and surrounding land cover categories. Korean Soc. Environ. Impact Assess. 2019, 28, 568–579. [Google Scholar] [CrossRef]
- Weng, Q.; Yang, S. Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environ. Monit. Assess. 2006, 117, 463–489. [Google Scholar] [CrossRef]
- Kim, Y.; Guldmann, J.-M. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea. Atmos. Environ. 2011, 45, 2803–2810. [Google Scholar] [CrossRef]
- Jeong, J.-C.; Lee, P.S.-H. Spatial distribution of particulate matters in comparison with land-use and traffic volume in Seoul, Republic of Korea. J. Cadastre Land Inf. 2018, 48, 123–138. [Google Scholar] [CrossRef]
- Hwang, S.-Y.; Moon, J.-Y.; Kim, J.-J. Relationship analysis between fine dust and traffic in Seoul using R. Inst. Int. Broadcast. Commun. 2019, 19, 139–149. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Fan, S.; Li, X.; Han, J.; Cao, Y.; Dong, L. Field assessment of the impacts of landscape structure on different-sized airborne particles in residential areas of Beijing, China. Atmos. Environ. 2017, 166, 192–203. [Google Scholar] [CrossRef]
- Chen, J.; Yu, X.; Sun, F.; Lun, X.; Fu, Y.; Jia, G.; Zhang, Z.; Liu, X.; Mo, L.; Bi, H. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1) at Shelterbelt Site in Beijing. Atmosphere 2015, 6, 650–676. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, P.; Bennet, C.; Eliasson, I.; Lindgren, E.S. Suspended particulate matter and its relations to the urban climate in Dar es Salaam, Tanzania. Atmos. Environ. 2004, 38, 4175–4181. [Google Scholar] [CrossRef]
- He, G.-X.; Yu, C.W.F.; Lu, C.; Deng, Q. The Influence of Synoptic Pattern and Atmospheric Boundary Layer on PM10 and Urban Heat Island. Indoor Built Environ. 2013, 22, 796–807. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Park, C.-S. Variations of PM10 concentration in Seoul during 2015 and relationships to weather condition. J. Assoc. Korean Photo Geogr. 2017, 27, 47–64. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Wang, Y.; Liu, N.; Hong, Y. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmos. Res. 2017, 198, 185–193. [Google Scholar] [CrossRef]
- Jin, S.; Guo, J.; Wheeler, S.; Kan, L.; Che, S. Evaluation of impacts of trees on PM2.5 dispersion in urban streets. Atmos. Environ. 2014, 99, 277–287. [Google Scholar] [CrossRef]
- Nguyen, T.; Yu, X.; Zhang, Z.; Liu, M.; Liu, X. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J. Environ. Sci. 2015, 27, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; McHale, P.J.; Ibarra, M.; Crane, D.; Stevens, J.C.; Luley, C.J. Modeling the Effects of Urban Vegetation on Air Pollution. In Air Pollution Modeling and Its Application XII; Springer Science and Business Media LLC: Boston, MA, USA, 1998; pp. 399–407. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Park, S.; Shin, H. Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors. J. Environ. Policy Adm. 2017, 25, 227–248. [Google Scholar] [CrossRef]
- Ministry of Environment. Particulate Matter, What Is It; Ministry of Environment Press: Sejong, Korea, 2016; pp. 1–72.
- Je, M.-H.; Jung, S.-H. Urban Heat Island Intensity Analysis by Landuse Types. J. Korea Cont. Assoc. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Nam Goung, S.J.; Choi, K.Y.; Hong, H.J.; Yoon, D.K.; Kim, Y.S.; Park, S.H.; Kim, Y.K.; Lee, C.M. Study on the selection and application of a spatial analysis model appropriate for selecting the radon priority management target area. J. Environ. Health Sci. 2019, 45, 82–96. [Google Scholar] [CrossRef]
- Lee, J.-H.; Ryu, J.-E.; Choi, Y.-Y.; Chung, H.-I.; Jeon, S.-W.; Lim, J.-H.; Choi, H.-S. Spatial estimation of forest species diversity index by applying spatial interpolation method—Based on 1st Forest Health Management data. J. Korean Soc. Environ. Restor. Technol. 2019, 22, 1–14. [Google Scholar] [CrossRef]
- Yim, J.S.; Lee, G.H. Estimating Urban Temperature by Combining Remote Sensing Data and Terrain Based Spatial Interpolation Method. J. Korean Cartogr. Assoc. 2017, 17, 75–88. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, T.H.; Lee, J.O.; Lee, Y.L. Repeated Measures ANOVA for Fine Dust of Industrial Complex 3 and 4 in Daejeon, South Korea. J. Korean Soc. Hazard Mitig. 2019, 19, 235–245. [Google Scholar] [CrossRef]
- Gouriou, F.; Morin, J.-P.; Weill, M.-E. On-road measurements of particle number concentrations and size distributions in urban and tunnel environments. Atmos. Environ. 2004, 38, 2831–2840. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Yoon, T.D. A Study on the Relationship between Urban Characteristics and the Concentration of the Fine-Particle (PM10) for Creating Pleasant Air-Environment. Master Thesis, Korea University, Seoul, Korea, August 2019. [Google Scholar]
Type of Particulate Matter | No. of PAQMSSs | n | Concentration | ||||
---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Variance | |||
PM10 | 123 | 180,072 | 14.75 | 62.32 | 31.89 | 5.40 | 54.71 |
PM2.5 | 123 | 180,072 | 8.71 | 32.68 | 16.72 | 3.85 | 27.75 |
Residential | Commercial | Industrial | Green | Transport | |
---|---|---|---|---|---|
Min. | 0.0 | 4653.5 | 0.0 | 0.0 | 9866.1 |
(0.0%) | (1.2%) | (0.0%) | (0.0%) | (3.4%) | |
Max. | 274,022.4 | 252,028.1 | 254,441.7 | 263,251.6 | 178,822.2 |
(83.1%) | (76.5%) | (77.1%) | (79.6%) | (54.2%) | |
Mean | 98,948.3 | 84,881.1 | 6114.2 | 63,022.8 | 78,729.0 |
(30.5%) | (26.3%) | (2.7%) | (19.8%) | (24.7%) | |
SD | 63,844.4 | 54,864.4 | 29,954.9 | 57,243.1 | 32,028.7 |
(19.4%) | (17.5%) | (9.2%) | (17.7%) | (10.5%) |
Classification of Clustering | F | p-Value | ||||
---|---|---|---|---|---|---|
Group 1 (n = 52) | Group 2 (n = 33) | Group 3 (n = 4) | Group 4 (n = 34) | |||
Residential | 0.485 | 0.141 | 0.058 | 0.189 | 104.155 | 0.000 |
Commercial | 0.220 | 0.467 | 0.041 | 0.133 | 79.290 | 0.000 |
Industrial | 0.000 | 0.004 | 0.457 | 0.009 | 155.736 | 0.000 |
Green | 0.098 | 0.108 | 0.122 | 0.421 | 86.732 | 0.000 |
Transport | 0.197 | 0.281 | 0.321 | 0.248 | 7.422 | 0.000 |
Group Characteristics | Residential Group | Commercial Group | Industrial Group | Green Group | - |
Period | Group | PM10 (µg/m3) Mean ± SD | Kruskal–Wallis | Paired Comparison | |||||
---|---|---|---|---|---|---|---|---|---|
Residential–Commercial | Residential–Industrial | Residential–Green | Commercial–Industrial | Commercial–Green | Industrial–Green | ||||
AM1 (03:00‒05:00) | Residential | 28.4 ± 14.4 | χ2 = 31.104 p = 0.001 * | Z = −3.620 p = 0.000 ** | Z = −1.417 p = 0.000 ** | Z = −5.314 p = 0.000 ** | Z = −0.367 p = 0.002 ** | Z = −1.327 p = 0.005 ** | Z = −1.175 p = 0.000 ** |
Commercial | 28.2 ± 11.9 | ||||||||
Industrial | 29.7 ± 10.0 | ||||||||
Green | 26.4 ± 12.3 | ||||||||
AM2 (07:00‒09:00) | Residential | 30.8 ± 14.9 | χ2 = 20.490 p = 0.001 * | Z = −3.278 p = 0.001 ** | Z = −1.560 p = 0.001 ** | Z = −4.086 p = 0.000 ** | Z = −0.016 p = 0.001 ** | Z = −0.641 p = 0.001 ** | Z = −0.362 p = 0.001 ** |
Commercial | 29.9 ± 12.7 | ||||||||
Industrial | 32.2 ± 9.7 | ||||||||
Green | 27.2 ± 13.4 | ||||||||
Noon (11:00‒13:00) | Residential | 34.6 ± 17.0 | χ2 = 29.267 p = 0.001 * | Z = −1.923 p = 0.004 ** | Z = −5.118 p = 0.001 ** | Z = −0.323 p = 0.004 ** | Z = −4.093 p = 0.000 ** | Z = −1.967 p = 0.001 ** | Z = −4.945 p = 0.000 ** |
Commercial | 34.1 ± 16.8 | ||||||||
Industrial | 35.8 ± 13.5 | ||||||||
Green | 28.3 ± 27.3 | ||||||||
PM1 (17:00‒19:00) | Residential | 32.3 ± 18.2 | χ2 = 26.899 p = 0.001* | Z = −3.975 p = 0.000 ** | Z = −3.950 p = 0.000 ** | Z = −2.649 p = 0.001 ** | Z = −1.894 p = 0.000 ** | Z = −1.218 p = 0.003 ** | Z = −2.541 p = 0.000 ** |
Commercial | 32.2 ± 17.2 | ||||||||
Industrial | 34.4 ± 14.5 | ||||||||
Green | 27.8 ± 18.5 | ||||||||
PM2 (21:00‒23:00) | Residential | 31.4 ± 14.7 | χ2 = 23.205 p = 0.001 * | Z = −3.667 p = 0.000 ** | Z = 1.580 p = 0.000 ** | Z = −4.246 p = 0.000 ** | Z = −0.156 p = 0.001 ** | Z = −0.395 p = 0.001 ** | Z = −0.362 p = 0.000 ** |
Commercial | 32.6 ± 12.6 | ||||||||
Industrial | 32.8 ± 11.1 | ||||||||
Green | 27.6 ± 12.4 |
Period | Group | PM2.5 (µg/m3) Mean ± SD | Kruskal– Wallis | Paired Comparison | |||||
---|---|---|---|---|---|---|---|---|---|
Residential – Commercial | Residential – Industrial | Residential – Green | Commercial – Industrial | Commercial – Green | Industrial – Green | ||||
AM1 (03:00‒05:00) | Residential | 17.9 ± 8.6 | χ2 = 32.139 p = 0.000 * | z = −3.451 p = 0.001 ** | Z = −0.251 p = 0.002 ** | Z = −5.425 p = 0.000 ** | Z = −1.318 p = 0.001 ** | Z = -−1.576 p = 0.001 ** | Z = −2.185 p = 0.000 ** |
Commercial | 17.1 ± 10.2 | ||||||||
Industrial | 18.6 ± 7.7 | ||||||||
Green | 16.2 ± 8.6 | ||||||||
AM2 (07:00‒09:00) | Residential | 18.3 ± 8.3 | χ2 = 29.273 p = 0.000 * | Z = −3.282 p = 0.001 ** | Z = −2.692 p = 0.007 ** | Z = −4.943 p = 0.000 ** | Z = −1.125 p = 0.001 ** | Z = −1.344 p = 0.000 ** | Z = −0.0447 p = 0.000 ** |
Commercial | 17.7 ± 9.5 | ||||||||
Industrial | 19.7 ± 7.7 | ||||||||
Green | 16.5 ± 9.2 | ||||||||
Noon (11:00‒13:00) | Residential | 18.6 ± 7.1 | χ2 = 5.041 p = 0.000 * | Z = −1.603 p = 0.001 ** | Z = −1.656 p = 0.000 ** | Z = −0.047 p = 0.000 ** | Z = −0.831 p = 0.000 ** | Z = -−1.427 p = 0.001 ** | Z = −1.502 p = 0.000 ** |
Commercial | 18.1 ± 8.2 | ||||||||
Industrial | 20.2 ± 6.5 | ||||||||
Green | 16.6 ± 7.9 | ||||||||
PM1 (17:00‒19:00) | Residential | 17.5 ± 7.2 | χ2 = 39.001 p = 0.000 * | Z = −3.253 p = 0.001 ** | Z = −1.556 p = 0.000 ** | Z = −5.510 p = 0.000 ** | Z = −2.942 p = 0.003 ** | Z = −1.880 p = 0.000 ** | Z = −3.994 p = 0.000 ** |
Commercial | 17.4 ± 8.6 | ||||||||
Industrial | 21.8 ± 6.4 | ||||||||
Green | 15.2 ± 7.9 | ||||||||
PM2 (21:00‒23:00) | Residential | 17.4 ± 6.7 | χ2 = 23.195 p = 0.000 * | Z = −2.718 p = 0.007 ** | Z = −2.207 p = 0.001 ** | Z = −4.550 p = 0.000 ** | Z = −0.947 p = 0.001 ** | Z = −1.436 p = 0.000 ** | Z = −0.203 p = 0.000 ** |
Commercial | 17.9 ± 7.9 | ||||||||
Industrial | 19.8 ± 6.7 | ||||||||
Green | 14.5 ± 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.S.; Lee, S.H.; Leem, Y. Temporal Changes in Air Quality According to Land-Use Using Real Time Big Data from Smart Sensors in Korea. Sensors 2020, 20, 6374. https://doi.org/10.3390/s20216374
Jo SS, Lee SH, Leem Y. Temporal Changes in Air Quality According to Land-Use Using Real Time Big Data from Smart Sensors in Korea. Sensors. 2020; 20(21):6374. https://doi.org/10.3390/s20216374
Chicago/Turabian StyleJo, Sung Su, Sang Ho Lee, and Yountaik Leem. 2020. "Temporal Changes in Air Quality According to Land-Use Using Real Time Big Data from Smart Sensors in Korea" Sensors 20, no. 21: 6374. https://doi.org/10.3390/s20216374
APA StyleJo, S. S., Lee, S. H., & Leem, Y. (2020). Temporal Changes in Air Quality According to Land-Use Using Real Time Big Data from Smart Sensors in Korea. Sensors, 20(21), 6374. https://doi.org/10.3390/s20216374