2-D Joint Sparse Reconstruction and Micro-Motion Parameter Estimation for Ballistic Target Based on Compressive Sensing
Abstract
:1. Introduction
2. Signal Model
2.1. The Micro-Motion Model of Ballistic Target
2.2. D-JSR-MPE Signal Model
3. D-JSR-MPE Algorithm
3.1. The Principle of 2D-JSR-MPE Based on CS
3.2. 2D-JSR-MPE Based on the Improved OMP Algorithm
- (1)
- Micro-motion curve parameters estimation. Firstly, the micro-motion curve parameters of the first scattering center in are estimated by (16)
- (2)
- Scattering center estimation. After obtaining , the weighted least square estimation (WLSE) method is adopted to estimate the principal component of the scattering centers in , and the corresponding scattering coefficient is . On this basis, we can reconstruct the corresponding SFB observation data .
- (3)
- Residual signal estimation. First, the residual SFB signal is calculated by subtracting from , i.e., . Then, according to step 1 and step 2, the parameter estimation and scattering center extraction of the principle component signal in are carried out. The estimated micro-motion curve parameters are . In this case, are used to update the basis matrix to , and the scattering coefficients are estimated as . It should be noted that the scattering coefficient of the principal component signal estimated in the first time and are also updated here.
- (4)
- Iterative operation. Repeat Step 2 and Step 3 until is met.
4. Experiments and Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, V.C.; Li, F.; Ho, S.S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Gao, H.; Xie, L.; Wen, S.; Kuang, Y. Micro-Doppler Signature Extraction from Ballistic Target with Micro-Motions. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1969–1982. [Google Scholar] [CrossRef]
- Xing, Y.; You, P.; Yong, S. Parameter Estimation of Micro-Motion Targets for High-Resolution-Range Radar Using Online Measured Reference. Sensors 2018, 18, 2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Lu, H.; Zhao, F.; Zhang, Z. Estimating Shape and Micro-Motion Parameter of Rotationally Symmetric Space Objects from the Infrared Signature. Sensors 2016, 16, 1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camp, W.W.; Mayhan, J.T.; O’Donnell, R.M. Wideband radar for ballistic missile defense and range-doppler imaging for satellites. Linc. Lab. J. 2000, 12, 267–280. [Google Scholar]
- Liu, Y.; Zhu, D.; Li, X.; Zhuang, Z. Micromotion characteristic acquisition based on wideband radar phase. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3650–3657. [Google Scholar] [CrossRef]
- Su, X.; Liu, Z.; Chen, X.; Wei, X. Closed-Form Algorithm for 3-D Near-Field OFDM Signal Localization under Uniform Circular Array. Sensors 2018, 18, 226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Qiao, Z.; Xing, M.; Li, Y.; Bao, Z. High-resolution ISAR imaging with sparse stepped-frequency waveforms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4630–4651. [Google Scholar] [CrossRef]
- Bose, R.; Freeman, A.; Steinberg, B.D. Sequence CLEAN: A modified deconvolution technique for microwave images of contiguous targets. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 89–97. [Google Scholar] [CrossRef]
- Martorella, M.; Acito, N.; Berizzi, F. Statistical CLEAN Technique for ISAR Imaging. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3552–3560. [Google Scholar] [CrossRef]
- Li, H.J.; Farhat, N.H.; Shen, Y. A new iterative algorithm for extrapolation of data available in multiple restricted regions with applications to radar imaging. IEEE Trans. Antennas. Propag. 1987, 35, 581–588. [Google Scholar]
- Gupta, I.; Beals, M.; Moghaddar, A. Data extrapolation for high resolution radar imaging. IEEE Trans. Antennas. Propag. 1994, 42, 1540–1545. [Google Scholar] [CrossRef]
- Huan, S.; Zhang, M.; Dai, G.; Gan, H. Low Elevation Angle Estimation with Range Super-Resolution in Wideband Radar. Sensors 2020, 20, 3104. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.O.; Copsey, K.D.; Webb, A.R. A Bayesian approach to simultaneous autofocus and super-resolution. Proc. Spie Int. Soc. Opt. Eng. 2004, 5427, 133–142. [Google Scholar]
- Rauhut, H.; Schnass, K.; Vandergheynst, P. Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 2008, 54, 2210–2219. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Park, Y.M.; Kim, S. Wideband DOA Estimation on Co-prime Array via Atomic Norm Minimization. Sensors 2020, 13, 3235. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, J.; Qiao, Z.J.; Xing, M.; Bao, Z. Phase adjustment and isar imaging of maneuvering targets with sparse apertures. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1955–1973. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, L.; Liu, H.; Zhou, Y. Accelerated translational motion compensation with contrast maximisation optimisation algorithm for inverse synthetic aperture radar imaging. IET Radar Sonar Navig. 2019, 13, 316–325. [Google Scholar] [CrossRef]
- Voros, J. Modeling and parameter identification of systems with multisegment piecewise-linear characteristics. IEEE Trans. Autom. Control 2002, 47, 184–188. [Google Scholar] [CrossRef]
- Jahromi, M.J.; Kahaei, M.H. Two-dimensional iterative adaptive approach for sparse matrix solution. Electron. Lett. 2014, 50, 45–47. [Google Scholar] [CrossRef]
- Duarte, M.F.; Baraniuk, R.G. Kronecker Compressive Sensing. IEEE Trans. Image Process. 2012, 21, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhang, L.; Liu, H. High-resolution ISAR imaging and motion compensation with 2-D joint sparse reconstruction. IEEE Trans. Geosci. Remote Sens. 2020, 1–21. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, L.; Liu, H.; Zhou, Y. Spatial-variant contrast maximization auto focus algorithm for ISAR imaging of maneuvering targets. Sci. China Inf. Sci. 2019, 62, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Xing, M.; Zhang, L.; Duan, J.; Chen, Q.; Bao, Z. Sparse Apertures ISAR Imaging and Scaling for Maneuvering Targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2942–2956. [Google Scholar] [CrossRef]
- Niu, J.; Zhu, Y.; Liu, Y.; Li, X.; Kuang, G. Radar micro-motion feature extraction of cone target based on Hilbert-Huang transform. In Proceedings of the IEEE International Conference on Information Science and Technology, Hubei, China, 23–25 March 2012; pp. 401–404. [Google Scholar]
Parameters | Values |
---|---|
Height of the target | 4.0 m |
Distance between the mass center and the top of the target | 2.7 m |
Radius of the bottom | 0.3 m |
Spinning frequency | 2 Hz |
Coning frequency | 4 Hz |
Oscillating frequency | 1 Hz |
Precession angle | 10° |
Parameters | Values |
---|---|
Carrier frequency | 10 GHz |
Bandwidth | 1 GHz |
Pulse repetition frequency | 4 kHz |
Coherent processing interval | 1 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Shao, S.; Zhang, L.; Liu, H. 2-D Joint Sparse Reconstruction and Micro-Motion Parameter Estimation for Ballistic Target Based on Compressive Sensing. Sensors 2020, 20, 4382. https://doi.org/10.3390/s20164382
Wei J, Shao S, Zhang L, Liu H. 2-D Joint Sparse Reconstruction and Micro-Motion Parameter Estimation for Ballistic Target Based on Compressive Sensing. Sensors. 2020; 20(16):4382. https://doi.org/10.3390/s20164382
Chicago/Turabian StyleWei, Jiaqi, Shuai Shao, Lei Zhang, and Hongwei Liu. 2020. "2-D Joint Sparse Reconstruction and Micro-Motion Parameter Estimation for Ballistic Target Based on Compressive Sensing" Sensors 20, no. 16: 4382. https://doi.org/10.3390/s20164382
APA StyleWei, J., Shao, S., Zhang, L., & Liu, H. (2020). 2-D Joint Sparse Reconstruction and Micro-Motion Parameter Estimation for Ballistic Target Based on Compressive Sensing. Sensors, 20(16), 4382. https://doi.org/10.3390/s20164382