Multi-feature Fusion and Damage Identification of Large Generator Stator Insulation Based on Lamb Wave Detection and SVM Method
Abstract
:1. Introduction
2. Principle of Stator Insulation Damage Identification Based on Lamb Wave
3. Extraction and Fusion Methods of Stator Insulation Damage Features
3.1. Damage Feature Extraction Based on Time Domain
3.2. Damage Feature Extraction Based on Frequency Domain
3.3. Damage Feature Extraction Based on Fractal Dimension
3.4. Multi-feature Fusion of Stator Insulation Damage
4. Classifier Design of Stator Insulation Damage Identification
5. Numerical Simulation and Result Analysis of Stator Insulation Damage Identification
5.1. Stator Insulation Structure Model
5.2. Analysis of Insulation Damage Identification Results Based on a Single Feature
5.3. Analysis of Insulation Damage Identification Results Based on Multi-feature Fusion
6. Experiment and Result Analysis of Stator Insulation Damage Identification
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Istad, M.; Runde, M.; Nysveen, A. A Review of Results from Thermal Cycling Tests of Hydrogenerator Stator Windings. IEEE Trans. Energy Convers. 2011, 26, 890–903. [Google Scholar] [CrossRef]
- Lévesque, M.; Hudon, C.; David, E. Insulation degradation analysis of stator bars subjected to slot partial discharges. In Proceedings of the 2013 IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 479–483. [Google Scholar]
- Sumereder, C.; Weiers, T. Significance of Defects Inside In-Service Aged Winding Insulations. IEEE Trans. Energy Convers. 2008, 23, 9–14. [Google Scholar] [CrossRef]
- Stone, G.C. Condition monitoring and diagnostics of motor and stator windings—A review. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2073–2080. [Google Scholar] [CrossRef]
- Lu, Y.; Su, Z.; Ye, L. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar]
- Toyama, N.; Noda, J.; Okabe, T. Quantitative damage detection in cross-ply laminates using Lamb wave method. Compos. Sci. Technol. 2003, 63, 1473–1479. [Google Scholar] [CrossRef]
- Guo, Q.; Li, R.; Li, H.; Hu, B. Groundwall insulation damage localization of large generator stator bar using an active Lamb waves method. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1860–1869. [Google Scholar]
- Li, R.; Li, H.; Hu, B. Damage Identification of Large Generator Stator Insulation Based on PZT Sensor Systems and Hybrid Features of Lamb Waves. Sensors 2018, 18, 2745. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, R.; Hu, B.; Yan, C.; Guo, Q. Application of guided waves and probability imaging approach for insulation damage detection of large generator stator bar. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3216–3225. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, C.G.; Zhang, J.; Shi, Q.; Zeng, H. Fault Diagnosis of Railway Rolling Bearing Based on Wavelet Analysis and FCM. Int. J. Digit. Content Technol. Appl. 2011, 5, 47–58. [Google Scholar]
- Fenza, A.D.; Sorrentino, A.; Vitiello, P. Application of Artificial Neural Networks and Probability Ellipse methods for damage detection using Lamb waves. Compos. Struct. 2015, 133, 390–403. [Google Scholar] [CrossRef]
- Sánchez, R.; Lucero, P.; Macancela, J.; Cerrada, M.; Vásquez, R.E.; Pacheco, F. Multi-fault Diagnosis of Rotating Machinery by Using Feature Ranking Methods and SVM-based Classifiers. In Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 16–18 August 2017; pp. 105–110. [Google Scholar]
- Li, Y.; Yang, Y.; Wang, X.; Liu, B.; Liang, X. Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine. J. Sound Vib. 2018, 428, 72–86. [Google Scholar] [CrossRef]
- Hosseinabadi, H.Z.; Amirfattahi, R.; Nazari, B.; Mirdamadi, H.R.; Atashipour, S.A. GUW-based structural damage detection using WPT statistical features and multiclass SVM. Appl. Acoust. 2014, 86, 59–70. [Google Scholar] [CrossRef]
- Lu, Y.; Ye, L.; Wang, D.; Wang, X.; Su, Z.Q. Conjunctive and compromised data fusion schemes for identification of multiple notches in an aluminium plate using lamb wave signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2005–2016. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Ye, L.; Bu, X. A damage identification technique for CF/EP composite laminates using distributed piezoelectric transducers. Compos. Struct. 2002, 57, 465–471. [Google Scholar] [CrossRef]
- Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Ramirez-Cortes, J.; Cruz-Vega, I. Hilbert spectrum analysis of induction motors for the detection of incipient broken rotor bars. Measurement 2017, 109, 247–255. [Google Scholar] [CrossRef]
- Khalili, P.; Cawley, P. Relative Ability of Wedge-Coupled Piezoelectric and Meander Coil EMAT Probes to Generate Single-Mode Lamb Waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 648–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.T. On the selection of advanced signal processing techniques for guided wave damage identification using a statistical approach. Eng. Struct. 2014, 67, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Fan, J.; Zhang, F. Extraction the unbalance features of spindle system using wavelet transform and power spectral density. Measurement 2013, 46, 1279–1290. [Google Scholar] [CrossRef]
- She, Z.; Li, R.; Gu, H.; Hu, B.; Mao, Z. Damage Feature Extraction and Parameter Characterization of Large Generator Stator Insulation Based on Lamb Waves Detection Method. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 421–425. [Google Scholar]
- Zbilut, J.P.; Marwan, N. The Wiener–Khinchin theorem and recurrence quantification. Phys. Lett. A 2008, 372, 6622–6626. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Camarena-Martinez, D.; Granados-Lieberman, D.; Romero-Troncoso, R.J.; Dominguez-Gonzalez, A. Fractal dimension-based approach for detection of multiple combined faults on induction motors. J. Vib. Control 2015, 22, 3638–3648. [Google Scholar] [CrossRef]
- Moustafa, A.; Salamone, S. Fractal dimension–based Lamb wave tomography algorithm for damage detection in plate-like structures. J. Intell. Mater. Syst. Struct. 2012, 23, 1269–1276. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.L.; Yue, X. Fault Diagnosis of Rotating Machinery Based on FDR Feature Selection Algorithm and SVM. Adv. Mater. Res. 2010, 139–141, 2506–2512. [Google Scholar] [CrossRef]
- He, H.X.; Yan, W.M. Structural damage detection with wavelet support vector machine: Introduction and applications. Struct. Control Herlth Monit. 2010, 14, 162–176. [Google Scholar] [CrossRef]
- Andrew, A.M. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Kybernetes 2001, 32, 1–28. [Google Scholar]
- Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis. Noise. Vib. Worldw. 2008, 21, 2560–2574. [Google Scholar] [CrossRef]
- Wu, K.P.; Wang, S.D. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recognit. 2009, 42, 710–717. [Google Scholar] [CrossRef]
- Yan, C.; Li, R.; Li, H.; Hu, B. Research on damage detection of large generator stator insulation using guided waves. In Proceedings of the 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013; pp. 1153–1156. [Google Scholar]
- Li, R.; Gu, H.; Hu, B. Damage detection of large generator stator insulation using a dual excitation guided waves method. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; pp. 772–775. [Google Scholar]
Damage Size(mm) | WFD | HT (10−10 m) | PSD (10−23 W/Hz) | FFT (10−7 m) | ||
---|---|---|---|---|---|---|
x | y | z | ||||
0 | 0 | 0 | 1.3641 | 3.101 | 1.702 | 1.397 |
20 | 1 | 2 | 1.56965 | 3.092 | 1.669 | 1.368 |
20 | 3 | 2 | 1.8877 | 3.081 | 1.666 | 1.367 |
20 | 5 | 2 | 2.1125 | 3.054 | 1.662 | 1.365 |
20 | 3 | 1 | 1.85395 | 3.084 | 1.667 | 1.368 |
20 | 3 | 2 | 1.8877 | 3.081 | 1.666 | 1.367 |
20 | 3 | 3 | 1.91445 | 3.078 | 1.663 | 1.366 |
10 | 3 | 2 | 1.7076 | 3.093 | 1.668 | 1.368 |
20 | 3 | 2 | 1.8877 | 3.081 | 1.666 | 1.367 |
30 | 3 | 2 | 1.99755 | 3.069 | 1.66 | 1.365 |
1 | 2 | 1 | 1.3739 | 3.101 | 1.67 | 1.368 |
3 | 2 | 3 | 1.45065 | 3.1 | 1.668 | 1.367 |
5 | 2 | 5 | 1.5441 | 3.098 | 1.665 | 1.365 |
1 | 4 | 1 | 1.38285 | 3.1 | 1.667 | 1.367 |
3 | 4 | 3 | 1.5179 | 3.099 | 1.666 | 1.366 |
5 | 4 | 5 | 1.66095 | 3.094 | 1.663 | 1.364 |
1 | 6 | 1 | 1.38925 | 3.099 | 1.666 | 1.365 |
3 | 6 | 3 | 1.5627 | 3.097 | 1.664 | 1.363 |
5 | 6 | 5 | 1.73155 | 3.09 | 1.66 | 1.36 |
5 | 1 | 5 | 1.7335 | 3.589 | 2.24 | 1.591 |
10 | 1 | 10 | 1.87065 | 3.577 | 2.13 | 1.561 |
15 | 1 | 15 | 2.2235 | 3.494 | 1.91 | 1.502 |
5 | 2 | 5 | 1.9889 | 3.563 | 2.133 | 1.558 |
10 | 2 | 10 | 2.0066 | 3.555 | 2.007 | 1.527 |
15 | 2 | 15 | 2.26645 | 3.483 | 1.897 | 1.489 |
5 | 3 | 5 | 2.07835 | 3.528 | 2.03 | 1.524 |
10 | 3 | 10 | 2.10295 | 3.475 | 1.945 | 1.494 |
15 | 3 | 15 | 2.29675 | 3.445 | 1.838 | 1.461 |
1 | 1 | 1 | 1.41915 | 3.601 | 2.29 | 1.605 |
2 | 2 | 2 | 1.95155 | 3.572 | 2.16 | 1.567 |
3 | 3 | 3 | 2.0727 | 3.54 | 2.06 | 1.534 |
Features | Number of Training Samples | Number of Testing Samples | Identification Results | Identification Accuracy | ||
---|---|---|---|---|---|---|
ANN | SVM | ANN | SVM | |||
HT | 16 | 13 | 2 | 3 | 15.4% | 23.1% |
FFT | 16 | 13 | 3 | 4 | 23.1% | 30.1% |
PSD | 16 | 13 | 5 | 6 | 38.5% | 46.1% |
WFD | 16 | 13 | 3 | 5 | 23.1% | 38.5% |
WFD | HT (10−10 m) | PSD (10−23 W/Hz) | FFT (10−7 m) | x | y | z | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.56965 | 3.092 | 1.669 | 1.368 | 20 | 1 | 2 | 18.95 | 1.08 | 2.15 | 5.3% | 8.0% | 7.5% |
1.91445 | 3.078 | 1.663 | 1.366 | 20 | 3 | 3 | 19.21 | 3.11 | 3.11 | 3.9% | 3.7% | 3.7% |
1.85395 | 3.084 | 1.667 | 1.368 | 20 | 3 | 1 | 18.29 | 3.09 | 1.03 | 8.6% | 3.0% | 3.0% |
1.7076 | 3.093 | 1.668 | 1.368 | 10 | 3 | 2 | 10.80 | 3.12 | 2.03 | 8.0% | 4.0% | 1.5% |
1.45065 | 3.1 | 1.668 | 1.367 | 3 | 2 | 3 | 3.08 | 2.06 | 2.96 | 2.7% | 3.0% | 1.3% |
1.5179 | 3.099 | 1.666 | 1.366 | 3 | 4 | 3 | 3.16 | 3.68 | 2.95 | 5.3% | 8.0% | 1.7% |
1.66095 | 3.094 | 1.663 | 1.364 | 5 | 4 | 5 | 5.32 | 3.82 | 4.87 | 6.4% | 4.5% | 2.6% |
1.5627 | 3.097 | 1.664 | 1.363 | 3 | 6 | 3 | 3.26 | 6.21 | 2.86 | 8.7% | 3.5% | 4.7% |
1.87065 | 3.577 | 2.13 | 1.561 | 10 | 1 | 10 | 8.37 | 1.08 | 9.10 | 6.3% | 8.0% | 9.0% |
2.26645 | 3.483 | 1.897 | 1.489 | 15 | 2 | 15 | 14.20 | 2.07 | 14.10 | 5.3% | 3.5% | 6.0% |
2.0066 | 3.555 | 2.007 | 1.527 | 10 | 2 | 10 | 10.18 | 2.12 | 9.80 | 1.8% | 6.0% | 2.0% |
2.1029 | 3.475 | 1.945 | 1.494 | 10 | 3 | 10 | 10.80 | 2.71 | 9.63 | 8.0% | 9.7% | 3.7% |
1.95155 | 3.572 | 2.16 | 1.567 | 2 | 2 | 2 | 2.17 | 1.90 | 2.18 | 8.5% | 5.0% | 9.0% |
Number of Features | Number of Training Samples | Number of Testing Samples | Identification Results | Identification Accuracy | ||
---|---|---|---|---|---|---|
ANN | SVM | ANN | SVM | |||
7 (HT, PSD, FFT, WFD, ) | 9 | 20 | 13 | 15 | 65% | 75% |
4 (HT, PSD, FFT, WFD) | 9 | 20 | 12 | 13 | 60% | 65% |
7 (HT, PSD, FFT, WFD, ) | 13 | 16 | 12 | 14 | 75% | 87.5% |
4 (HT, PSD, FFT, WFD) | 13 | 16 | 11 | 13 | 68.8% | 81.2% |
7 (HT, PSD, FFT, WFD, ) | 16 | 13 | 11 | 13 | 84.6% | 100% |
4 (HT, PSD, FFT, WFD) | 16 | 13 | 10 | 12 | 76.9% | 92.3% |
Number of Features | Number of Training Samples | Number of Testing Samples | Identification Results | Identification Accuracy | ||
---|---|---|---|---|---|---|
ANN | SVM | ANN | SVM | |||
HT | 15 | 5 | 0 | 1 | 0.0% | 20.0% |
PSD | 15 | 5 | 0 | 1 | 0.0% | 20.0% |
FFT | 15 | 5 | 0 | 1 | 0.0% | 20.0% |
WFD | 15 | 5 | 1 | 1 | 20.0% | 20.0% |
Number of Features | Number of Training Samples | Number of Testing Samples | Identification Results | Identification Accuracy | ||
---|---|---|---|---|---|---|
ANN | SVM | ANN | SVM | |||
7 (HT, PSD, FFT, WFD, ) | 8 | 5 | 1 | 3 | 20% | 60% |
4 (HT, PSD, FFT, WFD) | 8 | 5 | 1 | 2 | 20% | 40% |
7 (HT, PSD, FFT, WFD, ) | 12 | 5 | 3 | 4 | 60% | 80% |
4 (HT, PSD, FFT, WFD) | 12 | 5 | 2 | 3 | 40% | 60% |
7 (HT, PSD, FFT, WFD, ) | 15 | 5 | 3 | 5 | 60% | 100% |
4 (HT, PSD, FFT, WFD) | 15 | 5 | 3 | 4 | 60% | 80% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Gu, H.; Hu, B.; She, Z. Multi-feature Fusion and Damage Identification of Large Generator Stator Insulation Based on Lamb Wave Detection and SVM Method. Sensors 2019, 19, 3733. https://doi.org/10.3390/s19173733
Li R, Gu H, Hu B, She Z. Multi-feature Fusion and Damage Identification of Large Generator Stator Insulation Based on Lamb Wave Detection and SVM Method. Sensors. 2019; 19(17):3733. https://doi.org/10.3390/s19173733
Chicago/Turabian StyleLi, Ruihua, Haojie Gu, Bo Hu, and Zhifeng She. 2019. "Multi-feature Fusion and Damage Identification of Large Generator Stator Insulation Based on Lamb Wave Detection and SVM Method" Sensors 19, no. 17: 3733. https://doi.org/10.3390/s19173733
APA StyleLi, R., Gu, H., Hu, B., & She, Z. (2019). Multi-feature Fusion and Damage Identification of Large Generator Stator Insulation Based on Lamb Wave Detection and SVM Method. Sensors, 19(17), 3733. https://doi.org/10.3390/s19173733