Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Methods
2.3. Theoretical Foundations: Bispectrum
2.4. Bispectral Entropy Analysis
3. Results
3.1. Application of the Bispectrum to the Actigraphy Signal
3.2. Application of Bispectral Entropy as a Measure of Actigraphy Disorder
4. Discussion
- CDCR_SUENO: self-report of cerebrovascular disease & carotid revascularization.
- CHD_SELF_SUENO: combination of self-reports of coronary revascularization or heart attack.
- DIABETES_SELF_SUENO: indicates a self-report of diabetes.
- DIABETES _SUENO: indicates diabetes.
- DM_AWARE_SUENO: describes the awareness of diabetes.
- Hypertension_SUENO: indicates hypertension status.
- STROKE_SUENO: checks for a self-report of stroke history.
- STROKE_TIA_SUENO: checks for medical history of stroke, mini-stroke or TIA (transient ischemic attack).
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [Google Scholar] [CrossRef]
- Jean-Louis, G.; Kripke, D.F.; Mason, W.J.; Elliott, J.A.; Youngstedt, S.D. Sleep estimation from wrist movement quantified by different actigraphic modalities. J. Neurosci. Methods 2001, 105, 185–191. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcraft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [PubMed]
- de Souza, L.; Benedito, A.A.; Nogueira, M.L.; Poyares, D.; Tufik, S.; Calil, H.M. Further validation of actigraphy for sleep studies. Sleep 2003, 26, 1–5. [Google Scholar] [CrossRef]
- Taraldsen, K.; Chastin, S.F.; Riphagen, I.I.; Vereijken, B.; Helbostad, J.L. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: A systematic literature review of current knowledge and applications. Maturitas 2012, 71, 13–19. [Google Scholar] [CrossRef]
- Martin, J.L.; Hakim, A.D. Wrist Actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef]
- Ray, M.A.; Youngstedt, S.D.; Zhang, H.; Robb, S.W.; Harmon, B.E.; Jean Louis, G.; Bo, C.; Hurley, T.G.; Herbert, J.R.; Bogan, R.K.; et al. Examination of wrist and hip actigraphy using a novel sleep estimation procedure. Sleep Sci. 2014, 7, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Giménez, S.; Romero, S.; Alonso, J.F.; Mañanas, M.Á.; Pujol, A.; Baxarias, P.; Antonijoan, R.M. Monitoring sleep depth: Analysis of bispectral index (BIS) based on polysomnographic recordings and sleep deprivation. J. Clin. Monit. Comput. 2017, 31, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Chua, K.C.; Chandran, V.; Acharya, U.R.; Lim, C.M. Application of higher order statistics/spectra in biomedical signals: A review. Med. Eng. Phys. 2010, 32, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Vaquerizo-Villar, F.; Álvarez, D.; Kheirandish-Gozal, L.; Gutiérrez-Tobal, G.C.; Barroso-García, V.; Crespo, A.; Del Campo, F.; Gozal, D.; Hornero, R.G. Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syndrome using oximetry recordings. Comput. Methods Programs Biomed. 2018, 156, 141–149. [Google Scholar] [CrossRef]
- Noronha, K.P.; Acharya, U.R.; Nayak, K.P.; Martis, R.J.; Bhandary, S.V. Automated classification of glaucoma stages using higher order cumulant features. Biomed. Signal Process 2014, 10, 174–183. [Google Scholar] [CrossRef]
- Long, X.; Fonseca, P.; Foussier, J.; Haakma, R.; Aarts, R. Sleep and wake classification with actigraphy and respiratory effort using dynamic warping. IEEE J. Biomed. Health 2014, 18, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Patel, S.R.; Pantesco, E.J.; Buysse, D.J.; Kamarck, T.W.; Lee, L.; Hall, M.H. Similarities and differences in estimates of sleep duration by polysomnography, actigraphy, diary, and self-reported habitual sleep in a community sample. Sleep Health 2018, 4, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Dean, D.A., 2nd; Goldberger, A.L.; Mueller, R.; Kim, M.; Rueschman, M.; Mobley, D.; Sahoo, S.S.; Jayapandian, C.P.; Cui, L.; Morrical, M.G.; et al. Scaling up scientific discovery in sleep medicine: The National Sleep Research Resource. Sleep 2016, 39, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Cui, L.; Mueller, R.; Tao, S.; Kim, M.; Rueschman, M.; Mariani, S.; Mobley, D.; Redline, S. The National Sleep Research Resource: Towards a sleep data commons. J. Am. Med. Inform. Assoc. 2018. to appear. [Google Scholar] [CrossRef]
- Redline, S.; Sotres-Alvarez, D.; Loredo, J.; Hall, M.; Patel, S.R.; Ramos, A.; Shah, N.; Ries, A.; Arens, R.; Barnhart, J.; et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am. J. Respir. Crit. Care Med. 2014, 189, 335–344. [Google Scholar] [CrossRef]
- Patel, S.R.; Weng, J.; Rueschman, M.; Dudley, K.A.; Loredo, J.S.; Mossavar-Rahmani, Y.; Ramirez, M.; Ramos, A.R.; Reid, K.; Seiger, A.N.; et al. Reproducibility of a standardized actigraphy scoring algorithm for sleep in a US Hispanic/Latino Population. Sleep 2015, 38, 1497–1503. [Google Scholar] [CrossRef]
- Mendel, J.M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. IEEE Proc. 1991, 79, 278–305. [Google Scholar] [CrossRef]
- Nikia, C.L.; Mendel, J.M. Signal Processsing with higher-order spectra. IEEE Signal Process. Mag. 1993, 10, 10–37. [Google Scholar] [CrossRef]
- Swami, A.; Mendel, J.M.; Nikias, C.L. Higher-Order Spectral Analysis Toolbox User’s Guide, Version 2; United Signals & Systems, Inc.: Ranco Palos Verde, CA, USA, 2001. [Google Scholar]
- Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bao, M.; Zheng, C.; Li, X.; Yang, J.; Tian, J. Acoustical vehicle detection based on bispectral entropy. IEEE Signal Process. Lett. 2009, 16, 378–381. [Google Scholar] [CrossRef]
- Murua, A.; Sanz-Serna, J.M. Vibrational resonance: A study with high-order word-series averaging. Appl. Math. Nonlinear Sci. 2016, 1, 239–246. [Google Scholar] [CrossRef]
0.898 | 0.944 | 0.934 | 0.965 | 0.957 | 0.899 | 0.899 | 0.947 | 0.825 | 0.966 | 0.976 | 0.971 | 0.950 | 0.979 | 0.911 | 0.972 | 0.970 | 0.973 | 0.945 |
0.961 | 0.935 | 0.875 | 0.881 | 0.767 | 0.860 | 0.957 | 0.981 | 0.823 | 0.935 | 0.953 | 0.949 | 0.869 | 0.991 | 0.884 | 0.876 | 0.923 | 0.919 | - |
0.965 | 0.944 | 0.914 | 0.837 | 0.911 | 0.961 | 0.909 | 0.892 | 0.970 | 0.976 | 0.970 | 0.917 | 0.970 | 0.937 | 0.925 | 0.959 | 0.933 | - | - |
0.931 | 0.886 | 0.860 | 0.899 | 0.949 | 0.887 | 0.886 | 0.949 | 0.954 | 0.950 | 0.895 | 0.945 | 0.920 | 0.916 | 0.936 | 0.885 | - | - | - |
0.938 | 0.914 | 0.926 | 0.927 | 0.809 | 0.962 | 0.969 | 0.951 | 0.945 | 0.949 | 0.890 | 0.973 | 0.965 | 0.967 | 0.913 | - | - | - | - |
0.847 | 0.832 | 0.899 | 0.817 | 0.948 | 0.951 | 0.936 | 0.915 | 0.971 | 0.896 | 0.974 | 0.926 | 0.945 | 0.972 | - | - | - | - | - |
0.849 | 0.844 | 0.688 | 0.889 | 0.892 | 0.854 | 0.864 | 0.870 | 0.773 | 0.889 | 0.888 | 0.863 | 0.799 | - | - | - | - | - | - |
0.908 | 0.799 | 0.887 | 0.929 | 0.911 | 0.904 | 0.862 | 0.867 | 0.881 | 0.921 | 0.920 | 0.849 | - | - | - | - | - | - | - |
0.913 | 0.891 | 0.957 | 0.976 | 0.956 | 0.913 | 0.965 | 0.912 | 0.921 | 0.955 | 0.926 | - | - | - | - | - | - | - | - |
0.739 | 0.871 | 0.898 | 0.905 | 0.791 | 0.966 | 0.819 | 0.810 | 0.861 | 0.860 | - | - | - | - | - | - | - | - | - |
0.946 | 0.924 | 0.892 | 0.964 | 0.841 | 0.960 | 0.960 | 0.941 | 0.922 | - | - | - | - | - | - | - | - | - | - |
0.977 | 0.964 | 0.958 | 0.942 | 0.964 | 0.963 | 0.976 | 0.953 | - | - | - | - | - | - | - | - | - | - | - |
0.975 | 0.953 | 0.966 | 0.957 | 0.954 | 0.981 | 0.949 | - | - | - | - | - | - | - | - | - | - | - | - |
0.921 | 0.954 | 0.952 | 0.944 | 0.970 | 0.906 | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.888 | 0.970 | 0.961 | 0.960 | 0.957 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.899 | 0.886 | 0.937 | 0.931 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.962 | 0.971 | 0.937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.967 | 0.912 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.938 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.966 | 0.906 | 0.908 | 0.681 | 0.702 | 0.791 | 0.889 | 0.934 | 0.957 | 1.000 | 0.828 | 0.928 | 0.938 | 0.972 | 0.931 | 0.927 | 0.931 | 0.957 | 0.720 |
0.976 | 0.973 | 0.699 | 0.714 | 0.880 | 0.944 | 0.967 | 0.948 | 0.966 | 0.725 | 0.842 | 0.893 | 0.906 | 0.865 | 0.841 | 0.889 | 0.985 | 0.650 | - |
0.979 | 0.593 | 0.623 | 0.937 | 0.930 | 0.943 | 0.906 | 0.906 | 0.583 | 0.731 | 0.783 | 0.840 | 0.763 | 0.748 | 0.827 | 0.964 | 0.504 | - | - |
0.715 | 0.732 | 0.913 | 0.979 | 0.985 | 0.945 | 0.908 | 0.677 | 0.780 | 0.845 | 0.824 | 0.818 | 0.740 | 0.894 | 0.983 | 0.621 | - | - | - |
0.981 | 0.514 | 0.802 | 0.774 | 0.711 | 0.681 | 0.816 | 0.706 | 0.853 | 0.558 | 0.730 | 0.511 | 0.762 | 0.703 | 0.934 | - | - | - | - |
0.553 | 0.805 | 0.790 | 0.715 | 0.702 | 0.793 | 0.697 | 0.848 | 0.575 | 0.708 | 0.490 | 0.773 | 0.713 | 0.926 | - | - | - | - | - |
0.886 | 0.845 | 0.788 | 0.791 | 0.429 | 0.559 | 0.665 | 0.709 | 0.615 | 0.589 | 0.729 | 0.863 | 0.430 | - | - | - | - | - | - |
0.975 | 0.929 | 0.889 | 0.731 | 0.786 | 0.874 | 0.798 | 0.834 | 0.717 | 0.913 | 0.958 | 0.720 | - | - | - | - | - | - | - |
0.976 | 0.934 | 0.779 | 0.859 | 0.908 | 0.855 | 0.887 | 0.789 | 0.947 | 0.989 | 0.714 | - | - | - | - | - | - | - | - |
0.957 | 0.840 | 0.927 | 0.925 | 0.912 | 0.947 | 0.878 | 0.975 | 0.980 | 0.708 | - | - | - | - | - | - | - | - | - |
0.828 | 0.928 | 0.938 | 0.972 | 0.931 | 0.927 | 0.931 | 0.957 | 0.720 | - | - | - | - | - | - | - | - | - | - |
0.937 | 0.932 | 0.796 | 0.928 | 0.825 | 0.898 | 0.756 | 0.910 | - | - | - | - | - | - | - | - | - | - | - |
0.955 | 0.934 | 0.992 | 0.931 | 0.937 | 0.865 | 0.800 | - | - | - | - | - | - | - | - | - | - | - | - |
0.889 | 0.962 | 0.863 | 0.939 | 0.897 | 0.899 | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.929 | 0.950 | 0.887 | 0.892 | 0.646 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.924 | 0.954 | 0.892 | 0.802 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.846 | 0.845 | 0.618 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.932 | 0.801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Samples | CDCR_SUENO | CHD_SELF_SUENO | DIABETES_SELF_SUENO | DIABETES_SUENO | DM_AWARE_SUENO | HYPERTENSION_SUENO | STROKE_SUENO | STROKE_TIA_SUENO |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
17 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
18 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
19 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias Martínez, M.E.; García-Gomez, J.M.; Sáez, C.; Fernández de Córdoba, P.; Alberto Conejero, J. Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors 2018, 18, 4310. https://doi.org/10.3390/s18124310
Iglesias Martínez ME, García-Gomez JM, Sáez C, Fernández de Córdoba P, Alberto Conejero J. Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors. 2018; 18(12):4310. https://doi.org/10.3390/s18124310
Chicago/Turabian StyleIglesias Martínez, Miguel Enrique, Juan M. García-Gomez, Carlos Sáez, Pedro Fernández de Córdoba, and J. Alberto Conejero. 2018. "Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos" Sensors 18, no. 12: 4310. https://doi.org/10.3390/s18124310
APA StyleIglesias Martínez, M. E., García-Gomez, J. M., Sáez, C., Fernández de Córdoba, P., & Alberto Conejero, J. (2018). Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors, 18(12), 4310. https://doi.org/10.3390/s18124310