Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity
Abstract
:1. Introduction
2. Background
2.1. Sea Foam as a Medium
2.2. Bubbles in a Foam Layer
2.3. Definitions of Electromagnetic Properties
3. Foam Dielectric Properties
3.1. Sea Foam Permittivity
3.2. Foam Skin and Penetration Depths
3.3. Foam Impedance
3.4. Wavelength Changes in Foam Layers
3.5. Scattering Parameters of Foam
3.5.1. Characteristic Bubbles for Each Foam Sublayer
3.5.2. Size Parameter in a Foam Layer
3.5.3. Refractive Index of Foam
3.6. Roughness of Foam Layer Interfaces
4. Radiative Processes in Foam
4.1. Foam Reflection and Transmission
4.1.1. Foam as Impedance Matching
4.1.2. Effectiveness of Impedance Matching
4.2. Surface Scattering of Foam
4.3. Weak Volume Scattering Throughout a Foam Layer
4.3.1. Expected Scattering in Foam Layers
4.3.2. Altered Scattering in Foam Layers
4.4. Strong Absorption by Wet Foam Revisited
5. Discussion
5.1. Concept for the High Foam Emissivity
5.2. Foam as a Dynamic System
5.3. Modeling Scattering in Foam
5.3.1. Scattering Regimes in Foam
5.3.2. Variations of the Scattering Regimes in Foam
6. Conclusions
- Weak or negligible reflection at the foam layer interfaces with air and seawater due to foam impedance matching.
- Floating foam layers provide the most effective impedance matching.
- Weak or negligible surface scattering at the foam layer interfaces due to small roughness and low dielectric contrast of foam boundaries.
- Weak volume scattering throughout the foam due to simultaneous decrease in the foam depth of radiation wavelength and bubbles’ radii effective for scattering.
- Absorption losses are predominantly confined to the wet portion of the foam layer.
Acknowledgments
Appendix: Scattering Regimes Mapped in m − x Domain
Region | x | m-1 | x(m − 1) | Regime |
---|---|---|---|---|
RG (1) | arb | s | s | Rayleight-Gans |
AD (2) | l | s | arb | Anomalous Diffraction |
GO (3) | l | arb | l | Geometric optics |
TR (4) | arb | l | l | Total Reflector |
OR (5) | s | l | arb | Optical Resonance (Mie) |
RS (6) | s | arb | s | Rayleigh scattering |
References
- Gemmrich, J.R.; Banner, M.L.; Garrett, C. Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr 2008, 38, 1296–1312. [Google Scholar]
- Andreas, E.L.; Persson, P.O.G.; Hare, J.E. A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr 2008, 38, 1581–1596. [Google Scholar]
- Wanninkhof, R.; Asher, W.; Ho, D.; Sweeney, C.; McGillis, W. Advances in quantifying air-sea gas exchange and environmental forcing. Ann. Rev. Mater. Sci 2009, 1, 213–244. [Google Scholar]
- de Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O’Dowd, C.; Schulz, M.; Schwartz, S.E. Production flux of sea spray aerosol. Rev. Geophys 2011, 49. [Google Scholar] [CrossRef]
- Gordon, H.; Wang, M. Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Appl. Opt 1994, 33, 7754–7763. [Google Scholar]
- Padmanabhan, S.; Reising, S.C.; Asher, W.E.; Rose, L.A.; Gaiser, P.W. Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves. IEEE Trans. Geosci. Remote Sens 2006, 44, 569–583. [Google Scholar]
- Deane, G.B. Sound generation and air entrainment by breaking waves in the surf zone. J. Acoust. Soc. Am 1997, 102, 2671–2689. [Google Scholar]
- Goddijn-Murphy, L.; Woolf, D.K.; Callaghan, A.H. Parameterizations and algorithms for oceanic whitecap coverage. J. Phys. Oceanogr 2011, 41, 742–756. [Google Scholar]
- Piazzola, J.; Forget, P.; Lafon, C.S.; Despiau, S. Spatial variation of sea-spray fluxes over a Mediterranean coastal zone using a sea state model. Bound.-Lay. Meteorol 2009, 132, 167–183. [Google Scholar]
- Sugihara, Y.; Tsumori, H.; Ohga, T.; Yoshioka, H.; Serizawa, S. Variation of whitecap coverage with wave-field conditions. J. Mar. Syst 2007, 66, 47–60. [Google Scholar]
- Thomson, J.; Gemmrich, J.R.; Jessup, A.T. Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett 2009, 36, L11601. [Google Scholar]
- Callaghan, A.H.; White, M. Automated processing of sea surface images for the determination of whitecap coverage. J. Atmos. Ocean. Technol 2009, 26, 383–394. [Google Scholar]
- Jessup, A.T.; Zappa, C.J.; Loewen, M.R.; Hesany, V. Infrared remote sensing of breaking waves. Nature 1997, 385, 52–55. [Google Scholar]
- Nordberg, W.; Conaway, J.; Ross, D.B.; Wilheit, T. Measurements of microwave emission from a foam-covered, wind-driven sea. J. Atmos. Sci 1971, 28, 429–435. [Google Scholar]
- Anguelova, M.D.; Webster, F. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res 2006, 111. [Google Scholar] [CrossRef]
- Anguelova, M.; Bettenhausen, M.; Gaiser, P. Passive Remote Sensing of Sea Foam Using Physically-Based Models. Proceedings of the IEEE 2006 International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July–4 August 2006; pp. 3676–3679.
- Anguelova, M.D.; Bobak, J.P.; Asher, W.E.; Dowgiallo, D.J.; Moat, B.I.; Pascal, R.W.; Yelland, M.J. Validation of Satellite-Based Estimates of Whitecap Coverage: Approaches and Initial Results. Prcoeedings of 16th Conference on Air-Sea Interaction, Phoenix, AZ, USA, 11–15 January 2009; p. 14.
- Anguelova, M.D.; Bettenhausen, M.H.; Johnston, W.F.; Gaiser, P.W. First Extensive Whitecap Database and Its Use to Study Whitecap Fraction Variability. Proceedings of the 17th Conference on Air-Sea Interaction, Annapolis, MD, USA, 27–30 September 2010; p. 8.
- Williams, G.F. Microwave emissivity measurements of bubbles and foam. IEEE Trans. Geosci. Elect 1971, 9, 221–224. [Google Scholar]
- Bordonskiy, G.S.; Vasilkova, I.B.; Veselov, V.M.; Vorsin, N.N.; Militskii, I.U.; Mirovskii, V.G.; Nikitin, V.V.; Raizer, V.I.U.; Khapin, I.U.B.; Sharkov, E.A. Spectral characteristics of the emissivity of foam formations. Izv. Atmos. Ocean. Phys 1978, 14, 464–469. [Google Scholar]
- Smith, P.M. The emissivity of sea foam at 19-GHz and 37-GHz. IEEE Trans. Geosci. Remote Sens 1988, 26, 541–547. [Google Scholar]
- Rose, L.A.; Asher, W.E.; Reising, S.C.; Gaiser, P.W.; St Germain, K.M.; Dowgiallo, D.J.; Horgan, K.A.; Farquharson, G.; Knapp, E.J. Radiometric measurements of the microwave emissivity of foam. IEEE Trans. Geosci. Remote Sens 2002, 40, 2619–2625. [Google Scholar]
- Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models: A Critical Review; American Geophysical Union: Washington, DC, USA, 2004; p. 413. [Google Scholar]
- Anguelova, M.D. Complex dielectric constant of sea foam at microwave frequencies. J. Geophys. Res 2008, 113, C08001. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Gaiser, P.W. Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction. J. Geophys. Res 2011, 116, C11002. [Google Scholar] [CrossRef]
- Leifer, I.; de Leeuw, G. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. J. Geophys. Res 2006, 111, 18. [Google Scholar] [CrossRef]
- Leifer, I.; Caulliez, G.; de Leeuw, G. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics. J. Geophys. Res 2006, 111, 16. [Google Scholar]
- Militskii, Y.A.; Raizer, V.Y.; Sharkov, E.A.; Etkin, V.S. Scattering of microwave radiation by foamy structures. Rad. Eng. Electron Phys 1977, 22, 46–50. [Google Scholar]
- Guo, J.J.; Tsang, L.; Asher, W.; Ding, K.H.; Chen, C.T. Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Trans. Geosci. Remote Sens 2001, 39, 1019–1027. [Google Scholar]
- Deane, G.B.; Stokes, M.D. Scale dependence of bubble creation mechanisms in breaking waves. Nature 2002, 418, 839–844. [Google Scholar]
- Stokes, M.D.; Deane, G.B.; Vagle, S.; Farmer, D.M. Measurements of Large Bubbles in Open-Ocean Whitecaps. In Gas Transfer at Water Surfaces; Donelan, M.A., Drennan, W.M., Saltzman, E.S., Wanninkhof, R., Eds.; American Geophysical Union: Washington, DC, USA, 2002. [Google Scholar]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive: From Theory to Applications; Book-Mart Press Inc: North Bergen, NJ, USA, 1982; Volume 2, p. 1064. [Google Scholar]
- Stogryn, A.P. Equations for the Permittivity of Sea Water; Technical Report; GenCorp Aerojet: Azusa, CA, USA, 1997; p. 11. [Google Scholar]
- Sihvola, A. Electromagnetic Mixing Formulas and Applications; The Institute of Electrical Engineers: London, UK, 1999; p. 284. [Google Scholar]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive: Microwave Remote Sensing Fundamentals and Radiometery; Addison-Wesley Publishing: Reading, MA, USA, 1981; Volume 1, p. 456. [Google Scholar]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive: From Theory to Applications; Book-Mart Press Inc.: North Bergen, NJ, USA, 1986; Volume 3, p. 2162. [Google Scholar]
- van de Hulst, H.C. Light Scattering by Small Particles; Diver Publications: New York, NY, USA, 1981; p. 470. [Google Scholar]
- Stratton, J.A. Electromagnetic Theory; McGraw-Hill Book Company Inc: New York, NY, USA, 1941; p. 615. [Google Scholar]
- Raizer, V. Macroscopic foam-spray models for ocean microwave radiometry. IEEE Trans. Geosci. Remote Sens 2007, 45, 3138–3144. [Google Scholar]
- Dombrovskiy, L.A. Absorption and scattering of microwave radiation by spherical water shells. Izv. Atmos. Ocean. Phys 1982, 17, 238–241. [Google Scholar]
- Peake, W. Interaction of electromagnetic waves with some natural surfaces. IRE Trans. Ant. Propag 1959, 7, S324–S329. [Google Scholar]
- Brekhovskikh, L.M. Reflection Reduction of Optical Systems. In Waves in Layered Media, 1980 ed.; Academic Press: New York, NY, USA, 1980; p. 503. [Google Scholar]
- Pierson, W.J.; Stacy, R.A. The Elevation, Slope, and Curvature Spectra of a Wind Roughened Sea Surface; Report NASA CR-2247; NASA: Washington, DC, USA, 1973; p. 126. [Google Scholar]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janseen, P.A.E.M. Dynamics and Modeling of Ocean Waves; Cambridge University Press: Cambridge, London, UK, 1994; p. 532. [Google Scholar]
- Smith, S.D. Coefficients for sea-surface wind stress, heat-flux, and wind profiles as a function of wind-speed and temperature. J. Geophys. Res 1988, 93, 15467–15472. [Google Scholar]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for tropical ocean global atmosphere coupled ocean atmosphere response experiment. J. Geophys. Res 1996, 101, 3747–3764. [Google Scholar]
- Hwang, P.A. Wave number spectrum and mean square slope of intermediate-scale ocean surface waves. J. Geophys. Res 2005, 110, 7. [Google Scholar]
- Wilheit, T.T. Model for the microwave emissivity of the oceans surface as a function of wind-speed. IEEE Trans. Geosci. Remote Sens 1979, 17, 244–249. [Google Scholar]
- Wentz, F.; Meissner, T. Algorithm Theoretical Basis Document (ATBD): Amsr Ocean Algorithm; RSS Tech. Proposal 121599A-1; Remore Sensing Systems: Santa Rosa, CA, USA, 2000. [Google Scholar]
- Williams, G.F. Microwave radiometry of ocean and possibility of marine wind velocity determination from satellite observations. J. Geophys. Res 1969, 74, 4591–4594. [Google Scholar]
- Webster, W.J.; Wilheit, T.T.; Ross, D.B. Spectral characteristics of microwave emission from a wind-driven foam-covered sea. J. Geophys. Res 1976, 81, 3095–3099. [Google Scholar]
- Sharkov, E.A. Passive Microwave Remote Sensing of the Earth; Praxis: Chichester, UK, 2003; p. 613. [Google Scholar]
- de Wolf, T.; Holvoet, T. Emergence versus Self-Organisation: Different Concepts but Promising When Combined. In Engineering Self-Organising Systems: Methodologies and Applications; Brueckner, S.A., Di Marzo, S., Karageorgos, A., Nagpal, R., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; pp. 1–15. [Google Scholar]
- Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley&Sons: New York, NY, USA, 1985; p. 613. [Google Scholar]
- Aden, A.L.; Kerker, M. Scattering of electromagnetic waves from 2 concentric spheres. J. Appl. Phys 1951, 22, 1242–1246. [Google Scholar]
- Dombrovskiy, L.A. Light scattering and absorption by hollow spherical particles. Izv. Atmos.Ocean. Phys 1974, 10, 720–727. [Google Scholar]
- Dombrovskiy, L.A. Calculation of thermal radio emission from foam on the sea surface. Izv. Atmos. Ocean. Phys 1979, 15, 193–198. [Google Scholar]
- Camps, A.; Vall-Ilossera, M.; Villarino, R.; Reul, N.; Chapron, B.; Corbella, I.; Duffo, N.; Torres, F.; Miranda, J.J.; Sabia, R.; et al. The emissivity of foam-covered water surface at l-band: Theoretical modeling and experimental results from the frog 2003 field experiment. IEEE Trans. Geosci. Remote Sens 2005, 43, 925–937. [Google Scholar]
- Anguelova, M.D.; Huq, P. Characteristics of bubble clouds at various wind speeds. J. Geophys. Res 2012, 117, C03036. [Google Scholar] [CrossRef]
- Deane, G.B.; Stokes, M.D. Air entrainment processes and bubble size distributions in the surf zone. J. Phys. Oceanogr 1999, 29, 1393–1403. [Google Scholar]
- Ray, P.S. Broad-band complex refractive indexes of ice and water. Appl. Opt 1972, 11, 1836–1844. [Google Scholar]
- Paris, J.F. Microwave Radiometry and Its Application to Marine Meteorology and Oceanography; Tech. Rep. Ref. No. 69-1T; Department of Oceanography, Texas A&M University: College Station, TX, USA, 1969; p. 210. [Google Scholar]
- Maul, G.A. Introduction to Satellite Oceanography; Martinus Nijhoff Publishers: Boston, MA, USA, 1985; p. 606. [Google Scholar]
Equation # | Property | Symbol (Units) | Formula | Reference | Notes |
---|---|---|---|---|---|
Dielectric properties | |||||
(1) | Dielectric constant | εf | Equation (9.7) in [34] | Seawater is environment with permittivity ε; Bubbles are inclusions with void fraction fa | |
(2) | Skin depth | d (mm) | p. 847 in [32] | α field attenuation coefficient F frequency (Hz) c speed of light (cm s−1) | |
(3) | Penetration depth | δ (mm) | ditto | Scattering ignored Extinction ≅ Absorption i.e., ke ≅ ka = 2α | |
(4) | Intrinsic impedance | η | p. 226 in [35] | Normalized (relative), complex | |
(5) | Wavelength in foam | λf (cm) | p. 1453 in [36] | λ0 free-space wavelength | |
(6) | Propagation constant (wave number) | kf (cm−1) | p. 116 in [37] | ||
Scattering parameters | |||||
(7) | Size parameter | x | p. 128 in [37] | a bubble radius | |
(8) | Refraction index | m | p. 116 in [37] | m′ and m″ real and imaginary parts of m |
F GHz | λ0 cm (in air) | λf cm | λ cm (in seawater) | |
---|---|---|---|---|
fa = 98% | fa = 10% | |||
1.4 | 21.4 | 20.8 | 2.762 | 2.55 |
6.8 | 4.4 | 4.28 | 0.603 | 0.56 |
10.7 | 2.8 | 2.72 | 0.414 | 0.38 |
18.7 | 1.6 | 1.56 | 0.286 | 0.26 |
23.8 | 1.3 | 1.22 | 0.253 | 0.23 |
37.0 | 0.8 | 0.79 | 0.207 | 0.19 |
Foam Mixture | x (Figure 4) | Re{m} (Figure 5(a)) | |Im{m}| (Figure 5(b)) |
---|---|---|---|
fa = 98% a = 10 mm | 0.2–10 | ≅1 | 6 × 10−4−3 × 10−3 |
fa = 60% a = 0.3 mm | 0.02–0.6 | 3.5–2.5 | 0.6–1 |
fa = 10% a = 0.05 mm | 0.01–0.2 | 9–4.5 | 2–4 |
Foam sublayer | x | m − 1 | x.(m − 1) | Region | Regime |
---|---|---|---|---|---|
fa = 98% a = 10 mm | s to arb | s | s | R, RG-R, RG | Rayleigh-Gans |
fa = 60% a = 0.3 mm | s | arb | s | R | Rayleigh |
fa = 10% a = 0.05 mm | s | arb | s | R | Rayleigh |
Share and Cite
Anguelova, M.D.; Gaiser, P.W. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity. Remote Sens. 2012, 4, 1162-1189. https://doi.org/10.3390/rs4051162
Anguelova MD, Gaiser PW. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity. Remote Sensing. 2012; 4(5):1162-1189. https://doi.org/10.3390/rs4051162
Chicago/Turabian StyleAnguelova, Magdalena D., and Peter W. Gaiser. 2012. "Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity" Remote Sensing 4, no. 5: 1162-1189. https://doi.org/10.3390/rs4051162
APA StyleAnguelova, M. D., & Gaiser, P. W. (2012). Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity. Remote Sensing, 4(5), 1162-1189. https://doi.org/10.3390/rs4051162