Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data
Abstract
:1. Introduction
2. Data and Methods
2.1. MODIS Land Products Subsets
2.1.1. MOD13 NDVI and EVI
2.1.2. MOD15 LAI and FPAR
2.1.3. MOD17 GPP
2.2. FLUXNET Dataset
- The tower was surrounded by homogeneous land cover for a radius of at least 500 m;
- Temporally overlapping coverage with the MODIS subset data existed;
- The gap-filled ratio was less than 20% for all 12 months in a year.
2.3. Reduced Major Axis Regression Analyses
2.4. Short-Term Analysis
2.5. Annual Analysis
3. Results
3.1. Short-Term Correlation between MODIS Products and Flux Tower GPP
3.2. Annual Analysis between MODIS Products and Flux Tower GPP
3.2.1. NDVI and EVI vs. Annual Mean GPP
3.2.2. LAI and FPAR vs. Annual Mean GPP
3.3. Assessment of the Simple GPP Model with MOD17 GPP and Climate
4. Discussion
4.1. Why is Annual Mean LAI the Best Satellite-Derived Estimator of Annual GPP?
4.2. Why was the Performance of EVI Different between the Short-Term and Long-Term Spatial Analysis?
4.3. Assessment of the LAI Empirical Relationship with Other Datasets
4.4. Effects of Uncertainties in MODIS Products on Their Relationship with Annual GPP
5. Conclusions
Acknowledgments
References and Notes
- Milesi, C.; Hashimoto, H.; Running, S.W.; Nemani, R.R. Climate variability, vegetation productivity and people at risk. Global Planet. Change 2005, 47, 221–231. [Google Scholar]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar]
- Gholz, H.L. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 1982, 63, 469–481. [Google Scholar]
- Webb, W.L.; Lauenroth, W.K.; Szarek, S.R.; Kinerson, R.S. Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the United States. Ecology 1983, 64, 134–151. [Google Scholar]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol 1972, 9, 747–766. [Google Scholar]
- Goward, S.N.; Tucker, C.J.; Dye, D.G. North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer. Plant Ecol 1985, 64, 3–14. [Google Scholar]
- Running, S.W.; Nemani, R.R. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ 1988, 24, 347–367. [Google Scholar]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Phil. Trans. Roy. Soc. B 1977, 281, 277–294. [Google Scholar]
- Running, S.W.; Nemani, R.R.; Peterson, D.L.; Band, L.E.; Potts, D.F.; Pierce, L.L.; Spanner, M.A. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 1989, 70, 1090–1101. [Google Scholar]
- Kato, T.; Tang, Y. Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: Evidence from eddy covariance data. Global Change Biol 2008, 14, 2333–2348. [Google Scholar]
- Wu, C.; Niu, Z.; Gao, S. Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. J. Geophys. Res 2010, 115, D12127. [Google Scholar]
- Xiao, J.; Zhuang, Q.; Law, B.E.; Chen, J.; Baldocchi, D.D.; Cook, D.R.; Oren, R.; Richardson, A.D.; Wharton, S.; Ma, S.; et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ 2010, 114, 576–591. [Google Scholar]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.J.; Falk, M.; Fuentes, J.D.; et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agr. Forest Meteorol 2002, 113, 97–120. [Google Scholar]
- Tucker, C.J.; Townshend, J.R.G.; Goff, T.E. African land-cover classification using satellite data. Science 1985, 227, 369–375. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar]
- Gutman, G.G. On the use of long-term global data of land reflectances and vegetation indices derived from the Advanced Very High Resolution Radiometer. J. Geophys. Res 1999, 104, 6241–6255. [Google Scholar]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; DeFries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens 1998, 36, 1228–1249. [Google Scholar]
- Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ 1999, 70, 108–127. [Google Scholar]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc 2001, 82, 2415–2434. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213. [Google Scholar]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ 2004, 89, 519–534. [Google Scholar]
- Rahman, A.F.; Sims, D.A.; Cordova, V.D.; El-Masri, B.Z. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett 2005, 32, L19404. [Google Scholar]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Mission, L.; Monson, R.K.; et al. On the use of MODIS EVI to assess gross primary productivity of north American ecosystems. J. Geophys. Res 2006, 111, G04015. [Google Scholar]
- Huete, A.R.; Restrepo-Coupe, N.; Ratana, P.; Didan, K.; Saleska, S.R.; Ichii, K.; Panuthai, S.; Gamo, M. Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agr. Forest Meteorol 2008, 148, 748–760. [Google Scholar]
- Potter, C.; Klooster, S.; Huete, A.; Genovese, V. Terrestrial carbon sinks for the United States predicted from MODIS satellite data and ecosystem modeling. Earth Interact 2007, 11, 1–21. [Google Scholar]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ 2008, 112, 1633–1646. [Google Scholar]
- Wu, C.; Chen, J.M.; Huang, N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sens. Environ 2011, 115, 3424–3435. [Google Scholar]
- ORNL DAAC. MODIS Subsetted Land Products, Collection 5; ORNL DAAC: Oak Ridge, TN, USA, 2009. Available online: http://daac.ornl.gov/MODIS/modis.html from (accessed on 20 January 2012).
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ 2002, 83, 31–49. [Google Scholar]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ 2002, 83, 214–231. [Google Scholar]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ 2005, 95, 164–176. [Google Scholar]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 1986, 7, 1417–1434. [Google Scholar]
- Tucker, C.J.; Fung, I.Y.; Keeling, C.D.; Gammon, R.H. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 1986, 319, 195–199. [Google Scholar]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar]
- Yang, W.; Tan, B; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I.; et al. MODIS Leaf Area Index Products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens 2006, 44, 1885–1898. [Google Scholar]
- Aragão, L.E.O.C.; Shimabukuro, Y.E.; Sabto, F.D.B.E.; Williams, M. Spatial validation of the collection 4 MODIS LAI product in Eastern Amazonia. IEEE Trans. Geosci. Remote Sens 2005, 43, 2526–2534. [Google Scholar]
- De Kauwe, M.G.; Disney, M.I.; Quaife, T.; Lewis, P.; Williams, M. An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ 2011, 115, 767–780. [Google Scholar]
- Ganguly, S.; Samanta, A.; Schull, M.A.; Shabanov, N.V.; Milesi, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Generating vegetation leaf area index earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ 2008, 112, 4318–4332. [Google Scholar]
- Heinsch, F.A.; Zhao, M.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M.; et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens 2006, 44, 1908–1925. [Google Scholar]
- Atlas, R.M.; Lucchesi, R. File Specific for GEOS-DAS Gridded Output; Goddard Space Flight Center: Greenbelt, MD, USA, 2000. [Google Scholar]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biol 2005, 11, 1424–1439. [Google Scholar]
- Papale, D.; Valentini, R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol 2003, 9, 525–535. [Google Scholar]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biol 2010, 16, 187–208. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Maeirsperger, T.K.; Gower, S.T.; Kirschbaum, A.A.; Running, S.W.; Zhao, M.; Wofsy, S.C.; Dunn, A.L.; et al. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biol 2005, 11, 666–684. [Google Scholar]
- Hirata, R.; Saigusa, N.; Yamamoto, S.; Ohtani, Y.; Ide, R.; Asanuma, J.; Gamo, M.; Hirano, T.; Kondo, H.; Kosugi, Y.; et al. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agr. Forest Meteorol 2008, 148, 761–775. [Google Scholar]
- Kutsch, W.L.; Kolle, O.; Rebmann, C.; Knohl, A.; Ziegler, W.; Schulze, E.-D. Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany. Ecol. Appl 2008, 18, 1391–1405. [Google Scholar]
- Grünwald, T.; Bernhofer, C. A decade of carbon, water and energy flux measurements of an old spruce forest at the anchor station Tharandt. Tellus B 2007, 59, 387–396. [Google Scholar]
- Rebmann, C.; Zeri, M.; Lasslop, G.; Mund, M.; Kolle, O.; Schulze, E.-D.; Feigenwinter, C. Treatment and assessment of the CO2-exchange at a complex forest site in Thuringia, Germany. Agr. Forest Meteorol 2010, 150, 684–691. [Google Scholar]
- Chiesi, M.; Maselli, F.; Bindi, M.; Fibbi, L.; Cherubini, P.; Arlotta, E.; Tirone, G.; Matteucci, G.; Seufert, G. Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agr. Forest Meteorol 2005, 135, 22–34. [Google Scholar]
- Dolman, A.J.; Moors, E.J.; Elbers, J.A. The carbon uptake of a mid latitude pine forest growing on sandy soil. Agr. Forest Meteorol 2002, 111, 157–170. [Google Scholar]
- McMillan, A.M.S.; Goulden, M.L. Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochem. Cy 2008, 22, GB2023. [Google Scholar]
- Davidson, E.A.; Richardson, A.D.; Savage, K.E.; Hollinger, D.Y. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biol 2006, 12, 230–239. [Google Scholar]
- Schmid, H.P.; Grimmond, C.S.B.; Cropley, F.; Offerle, B.; Su, H.-B. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agr. Forest Meteorol 2000, 103, 357–374. [Google Scholar]
- Gu, L.; Meyers, T.; Pallardy, S.G.; Hanson, P.J.; Yang, B.; Heuer, M.; Hosman, K.P.; Liu, Q.; Riggs, J.S.; Sluss, D.; et al. Influences of biomass heat and biochemical energy storages on the land surface fluxes and diurnal temperature range. J. Geophys. Res 2007, 117, D02107. [Google Scholar]
- Irvine, J.; Law, B.E.; Kurpius, M.R.; Anthoni, P.M.; Moore, D.; Schwarz, P.A. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiol 2004, 24, 753–763. [Google Scholar]
- Domec, J.-C.; Noormets, A.; Sun, G.; King, J.; McNulty, S.; Gavazzi, M.; Boggs, J.; Treasure, E. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ 2009, 32, 980–991. [Google Scholar]
- Monson, R.K.; Sparks, J.P.; Rosenstiel, T.N.; Scott-Denton, L.E.; Huxman, T.E.; Harley, P.C.; Turnipseed, A.A.; Burns, S.P.; Backlund, B.; Hu, J. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 2005, 146, 130–147. [Google Scholar]
- Clark, K.L.; Gholz, H.L.; Castro, M.S. Carbon dynamics along a chronosequence of slash pine plantation in north Florida. Ecol. Appl 2004, 14, 1154–1171. [Google Scholar]
- Schmid, H.P.; Su, H.-B.; Vogel, C.S.; Curtis, P.S. Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J. Geophys. Res 2003, 108, 4417. [Google Scholar]
- Saleska, S.R.; Miller, S.D.; Matross, D.M.; Goulden, M.L.; Wofsy, S.C.; da Rocha, H.R.; de Camargo, P.B.; Crill, P.; Daube, B.C.; de Freitas, H.C.; et al. Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science 2003, 302, 1554–1557. [Google Scholar]
- Hirano, T.; Segah, H.; Harada, T.; Limin, S.; June, T.; Hirata, R.; Osaki, M. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biol 2007, 13, 412–425. [Google Scholar]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol 2005, 25, 693–712. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ 2002, 83, 287–302. [Google Scholar]
- Wang, W.; Dungun, J.; Hashimoto, H.; Michaelis, A.R.; Milesi, C.; Ichii, K.; Nemani, R.R. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multi-model ensemble experiment: 1. Primary production. Global Change Biol 2011, 17, 1350–1366. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Stith, T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ 2006, 102, 282–292. [Google Scholar]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens 1985, 6, 1335–1372. [Google Scholar]
- Numerical Terradynamic Simulation Group. Enhanced 1 km Global 8-day MODIS GPP/NPP (MOD17). 2009. Available online: ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD17A2.LATEST (accessed on 19 January 2012).
- Kira, T.; Shidei, T. Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Ecol. Soc. Japan 1967, 17, 70–87. [Google Scholar]
- Waring, R.H.; Schlesinger, W.H. Forest Ecosystems: Concepts and Management; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Field, C.B. Ecological scaling of carbon gain to stress and resource availability. In Response of Plants to Multiple Stresses; Mooney, H.A., Winner, W.E., Pell, E.J., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 35–65. [Google Scholar]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 1997, 94, 13730–13734. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar]
- Goetz, S.J.; Prince, S.D. Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency. Adv. Ecol. Res 1999, 28, 57–92. [Google Scholar]
- Myneni, R.B.; Nemani, R.R.; Running, S.W. Estimation of global leaf area index and adsorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens 1997, 35, 1380–1393. [Google Scholar]
- Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett 2006, 33, L06405. [Google Scholar]
- Zhou, L.; Dai, A.; Dai, Y.; Vose, R.S.; Zou, C.; Tian, Y.; Chen, H. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim. Dynam 2009, 32, 429–440. [Google Scholar]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res 2006, D111, G01002. [Google Scholar]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm. Remote Sens. Environ 2007, 110, 305–316. [Google Scholar]
Products | Spatial Resolution | Compositing Period | Citation | |
---|---|---|---|---|
MOD13Q1 | NDVI and EVI | 250 m | 16 day | Huete et al. [20] |
MOD15A2 | LAI and FPAR | 1 km | 8 day | Myneni et al. [30] |
MOD17A2 | GPP/NPP | 1 km | 8 day | Zhao et al. [31] |
Site Name | Abbreviation | Country/State | Latitude (°N) | Longitude (°E) | Forest Type | Year | Citation | |
---|---|---|---|---|---|---|---|---|
Non-tropics | Hainich | DE-Hai | Germany | 51.079 | 10.452 | DB | 2001–2007 | Kutsch et al. [47] |
Tharandt | DE-Tha | Germany | 50.964 | 13.567 | EN | 2001–2003 | Grünwald et al. [48] | |
Wetzstein | DE-Wet | Germany | 50.454 | 11.458 | EN | 2002–2008 | Rebmann et al. [49] | |
San Rossore | IT-SRo | Italy | 43.730 | 10.287 | EN | 2001–2004 | Chiesi et al. [50] | |
Loobos | NL-Loo | Netherlands | 52.168 | 5.744 | EN | 2001–2008 | Dolman et al. [51] | |
UCI-1964 burn site | CA-NS3 | Canada | 55.912 | −98.382 | EN | 2001–2005 | McMillan et al. [52] | |
UCI-1989 burn site | CA-NS6 | Canada | 55.917 | −98.964 | EN | 2001–2005 | McMillan et al. [52] | |
Howland Forest (west tower) | US-Ho2 | Maine, US | 45.209 | −68.747 | EN | 2001–2004 | Davidson et al. [53] | |
Morgan Monroe State Forest | US-MMS | Indiana, US | 39.323 | −86.413 | DB | 2001–2006 | Schmid et al. [54] | |
Missouri Ozark | US-MOz | Missouri, US | 38.744 | −92.200 | DB | 2004–2006 | Gu et al. [55] | |
Metolius Intermediate Pine | US-Me2 | Oregon, US | 44.452 | −121.557 | EN | 2002–2007 | Irvine et al. [56] | |
Metolius First Young Pine | US-Me5 | Oregon, US | 44.437 | −121.567 | EN | 2001–2002 | Irvine et al. [56] | |
North Carolina Loblolly Pine | US-NC2 | North Carolina, US | 35.803 | −76.668 | EN | 2005–2006 | Domec et al. [57] | |
Niwot Ridge Forest | US-NR1 | Colorado, US | 40.033 | −105.546 | EN | 2001–2007 | Monson et al. [58] | |
Mize | US-SP2 | Florida, US | 29.765 | −82.245 | EN | 2001–2004 | Clark et al. [59] | |
Univ. of Mich. Biological Station | US-UMB | Michigan, US | 45.560 | −84.714 | DB | 2001–2006 | Schmid et al. [60] | |
Tropics | Santarem Km83 Logged Forest | BR-Sa3 | Brazil | −3.018 | −54.971 | EB | 2001–2003 | Saleska et al. [61] |
Bukit Soeharto | ID-Buk | Indonesia | -0.833 | 117.050 | EB | 2002 | Huete et al. [24] | |
Palangkaraya | ID-Pal | Indonesia | −2.345 | 114.036 | EB | 2002–2003 | Hirano et al. [62] | |
Mae Klong | TH-Mae | Thailand | 14.575 | 98.858 | DB | 2003–2004 | Huete et al. [24] | |
Sakaerat | TH-Sak | Thailand | 14.493 | 101.922 | EB | 2002–2003 | Huete et al. [24] |
Composite Period | All (n = 21) | Deciduous (n = 5) | Evergreen (n = 16) | Non-Tropical (n = 16) | Tropical (n = 5) | ||
---|---|---|---|---|---|---|---|
MOD13 | NDVI | 16-day | 0.44 (2.08) | 0.64 (2.36) | 0.38 (1.98) | 0.51 (2.14) | 0.13 (1.78) |
32-day | 0.47 (1.94) | 0.65 (2.31) | 0.41 (1.80) | 0.54 (2.00) | 0.16 (1.68) | ||
EVI | 16-day | 0.55 (1.70) | 0.78 (1.73) | 0.47 (1.69) | 0.64 (1.70) | 0.11 (1.67) | |
32-day | 0.54 (1.67) | 0.77 (1.80) | 0.46 (1.62) | 0.62 (1.72) | 0.20 (1.42) | ||
MOD15 | LAI | 8-day | 0.38 (2.21) | 0.60 (2.56) | 0.30 (2.08) | 0.44 (2.31) | 0.13 (1.82) |
16-day | 0.43 (1.86) | 0.69 (2.05) | 0.34 (2.02) | 0.50 (2.09) | 0.13 (1.75) | ||
32-day | 0.51 (1.70) | 0.69 (2.09) | 0.38 (1.77) | 0.56 (1.89) | 0.10 (1.72) | ||
FPAR | 8-day | 0.31 (2.42) | 0.54 (2.81) | 0.23 (2.28) | 0.35 (2.57) | 0.14 (1.81) | |
16-day | 0.36 (2.26) | 0.62 (2.45) | 0.27 (2.20) | 0.41 (2.37) | 0.12 (1.77) | ||
32-day | 0.40 (1.90) | 0.62 (2.38) | 0.33 (1.91) | 0.47 (2.19) | 0.12 (1.63) | ||
MOD17 | GPP | 8-day | 0.68 (1.31) | 0.72 (1.95) | 0.67 (1.11) | 0.82 (1.17) | 0.12 (1.91) |
Composite Period | All Sites | Non-Tropical Sites | Tropical Sites | ||
---|---|---|---|---|---|
MOD13 | NDVI | 16-day | 0.50** | 0.48** | 0.30 |
32-day | 0.57** | 0.42** | 0.32 | ||
EVI | 16-day | 0.56** | 0.01 | 0.01 | |
32-day | 0.54** | 0.01 | 0.11 | ||
MOD15 | LAI | 8-day | 0.78** | 0.43** | 0.70* |
16-day | 0.83** | 0.57** | 0.68* | ||
32-day | 0.88** | 0.68** | 0.66* | ||
FPAR | 8-day | 0.56** | 0.46** | 0.64* | |
16-day | 0.58** | 0.59** | 0.55* | ||
32-day | 0.62** | 0.63** | 0.57* | ||
MOD17 | GPP | 8-day | 0.81** | 0.59** | 0.01 |
Share and Cite
Hashimoto, H.; Wang, W.; Milesi, C.; White, M.A.; Ganguly, S.; Gamo, M.; Hirata, R.; Myneni, R.B.; Nemani, R.R. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data. Remote Sens. 2012, 4, 303-326. https://doi.org/10.3390/rs4010303
Hashimoto H, Wang W, Milesi C, White MA, Ganguly S, Gamo M, Hirata R, Myneni RB, Nemani RR. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data. Remote Sensing. 2012; 4(1):303-326. https://doi.org/10.3390/rs4010303
Chicago/Turabian StyleHashimoto, Hirofumi, Weile Wang, Cristina Milesi, Michael A. White, Sangram Ganguly, Minoru Gamo, Ryuichi Hirata, Ranga B. Myneni, and Ramakrishna R. Nemani. 2012. "Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data" Remote Sensing 4, no. 1: 303-326. https://doi.org/10.3390/rs4010303
APA StyleHashimoto, H., Wang, W., Milesi, C., White, M. A., Ganguly, S., Gamo, M., Hirata, R., Myneni, R. B., & Nemani, R. R. (2012). Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data. Remote Sensing, 4(1), 303-326. https://doi.org/10.3390/rs4010303