Coseismic Slip Distribution and Coulomb Stress Change of the 2023 MW 7.8 Pazarcik and MW 7.5 Elbistan Earthquakes in Turkey
Abstract
:1. Introduction
2. Data
2.1. InSAR Data
2.2. GPS Data
3. Methodology
3.1. Pixel Offset Tracking
3.2. Coseismic Slip Distribution Inversion
3.3. Coulomb Failure Stress
4. Results and Discussion
4.1. Coseismic Surface Deformation
4.2. Coseismic Slip Distribution
4.3. Coseismic Coulomb Stress Disturbance and Regional Seismic Risk Assessment
5. Conclusions
- (1)
- The geometry of the ruptured faults in the Turkey double earthquakes is very complex, with ground fault lengths of 360 km and 220 km, respectively. Fault slips occurred at depths of 0–15 km. Both the earthquakes were left-lateral strike-slip earthquakes. The peak sliding value was situated near the surface, at approximately 8.2 m. Along the main fault, three conspicuous main slip zones were observed, two of which extended to the surface.
- (2)
- According to the CFS change, the Pazarcik earthquake caused a CFS change of 3.7 bars near the center of the Elbistan earthquake, which propelled the Elbistan earthquake. The Pazarcik and Elbistan earthquakes increased the CFS change (8.4 bars) in the Antakya fault, which facilitated the occurrence of the MW 6.3 Uzunbağ earthquake on 20 February 2023.
- (3)
- The Turkey double earthquakes subjected the Ecemis segment of CAFS and the Camliyayla, Aladag, and Ayvali faults to stress loading. The Ayvali fault exhibited a conspicuous CFS-loading condition, indicating a higher risk of future earthquakes, necessitating ongoing monitoring and risk assessment. The Pula fault released some stress during the 2010 Mw 6.1 Karakoçan earthquake. However, there was no significant fault rupture on this fault during this double-earthquake event, and the number of aftershocks in this segment was limited. Consequently, there might be a substantial accumulation of stress in this segment, suggesting the potential for significant earthquakes in the future.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | Lat | Lon | Depth (km) | Mag | Name |
---|---|---|---|---|---|
20 February 2023 | 36.16 | 36.02 | 16.00 | 6.30 | Uzunbağ |
6 February 2023 | 38.05 | 36.51 | 8.52 | 6.00 | Göksun |
6 February 2023 | 38.03 | 38.09 | 10.00 | 6.030 | Çelikhan |
6 February 2023 | 38.01 | 37.19 | 7.43 | 7.50 | Elbistan |
6 February 2023 | 37.18 | 36.89 | 9.80 | 6.70 | Nurdağı |
6 February 2023 | 37.22 | 37.01 | 10.00 | 7.80 | Pazarcik |
24 January 2020 | 38.43 | 39.06 | 10.00 | 6.70 | Sivrice |
8 March 2010 | 38.86 | 39.98 | 12.00 | 6.10 | Karakoçan |
11 August 2004 | 6.00 | ||||
1 May 2003 | 39.00 | 40.46 | 10.00 | 6.40 | Bingöl |
27 June 1998 | 36.87 | 35.30 | 33.00 | 6.30 | Adana |
5 May 1986 | 37.99 | 37.80 | 9.60 | 6.10 | Doğanşehir |
22 May 1971 | 38.93 | 40.65 | 10.00 | 6.58 | |
4 December 1905 | 38.15 | 38.64 | 10.00 | 6.80 | Sincik |
Layer | Depth (km) | Vp (km·s−1) | Vs (km·s−1) | Density (kg·m−3) |
---|---|---|---|---|
1 | 0.0 | 2.5 | 1.2 | 2100 |
2 | 0.5 | 2.5 | 1.2 | 2100 |
3 | 0.5 | 6.1 | 3.5 | 2750 |
4 | 18.5 | 6.1 | 3.5 | 2750 |
5 | 18.5 | 6.3 | 3.6 | 2800 |
6 | 34.5 | 6.3 | 3.6 | 2800 |
7 | 34.5 | 7.2 | 4.0 | 3100 |
8 | 43.0 | 7.2 | 4.0 | 3100 |
9 | 43.0 | 8.0 | 4.6 | 3350 |
10 | 100.0 | 8.0 | 4.6 | 3350 |
Faults | CFS Change | Faults | CFS Change | ||
---|---|---|---|---|---|
CAFZ | Deliler | −5.38 | Ayvali | 4.99 | |
Erkilet | −3.73 | Malatya | 112.84 | ||
Erciyes | −5.18 | Ovacik | −3.06 | ||
Ineesu | −3.01 | Heltepe | 0.77 | ||
Yesilhisar | Pulumur | ||||
Ecemis | 0.91 | Doğanşehir | −90.27 | ||
Camliyayla | 0.81 | DSF | −89.09 | ||
Aladag | EAFZ | Palu | 3.27 | ||
Sariz | −25.39 | Puturge | 19.94 | ||
Demiroluk | −16.39 | NAFZ | 8.04 | ||
Catalcam | Karacadag | −5.94 | |||
Saimbeyli | Gunasan | −5.44 | |||
Toprakkale | −13.96 | Harran | −1.82 | ||
Duzici-Iskcndcrun | −23.08 | Bozava | −32.83 | ||
Savrun | −12.38 | Besni | −28.03 | ||
Engizek | −58.07 | Antakya | 8.4 | ||
Beyyurdu | −4.44 | SATZ | 3.91 | ||
Gurun |
References
- He, L.; Feng, G.; Xu, W.; Wang, Y.; Xiong, Z.; Gao, H.; Liu, X. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence from InSAR and Optical Data. Geophys. Res. Lett. 2023, 50, e2023GL104693. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Chen, Q.; Yang, Y.-H.; Xu, Q. Coseismic Faulting Model and Post-Seismic Surface Motion of the 2023 Turkey-Syria Earthquake Doublet Revealed by InSAR and GPS Measurements. Remote Sens. 2023, 15, 3327. [Google Scholar] [CrossRef]
- He, L.; Feng, G.; Hu, J.; Xu, W.; Liu, J.; Li, Z.; Feng, Z.; Wang, Y.; Lu, H. Surface Displacement and Source Model Separation of the Two Strongest Earthquakes during the 2019 Ridgecrest Sequence: Insights from InSAR, GPS, and Optical Data. J. Geophys. Res. 2022, 127, e2021JB022779. [Google Scholar] [CrossRef]
- Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33, L16311. [Google Scholar] [CrossRef]
- Milliner, C.W.D.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain. Geophys. Res. Lett. 2016, 43, 10115–10124. [Google Scholar] [CrossRef]
- Lyberis, N.; Yurur, T.; Chorowicz, J.; Kasapoglu, E.; Gundogdu, N. The East Anatolian Fault: An oblique collisional belt. Tectonophysics 1992, 204, 1–15. [Google Scholar] [CrossRef]
- Duman, T.Y.; Emre, Ö. The East Anatolian fault: Geometry, segmentation and jog characteristics. Geol. Soc. Lond. Spec. Publ. 2013, 372, 495–529. [Google Scholar] [CrossRef]
- Konca, A.O.; Karabulut, H.; Guvercin, S.E.; Eskikoy, F.; Ozarpac, S.; Ozdemir, A.; Floyd, M.; Ergintav, S.; Dogan, U. From Interseismic Deformation with Near-Repeating Earthquakes to Co-Seismic Rupture: A Unified View of the 2020 Mw6.8 Sivrice (Elazig) Eastern Turkey Earthquake. J. Geophys. Res. 2021, 126, e2021JB021830. [Google Scholar] [CrossRef]
- Nalbant, S.S.; McCloskey, J.; Steacy, S.; Barka, A.A. Stress accumulation and increased seismic risk in eastern Turkey. Earth Planet Sci. Lett. 2002, 195, 291–298. [Google Scholar] [CrossRef]
- Sunbul, F. Time-dependent stress increase along the major faults in eastern Turkey. J. Geodyn. 2019, 126, 23–31. [Google Scholar] [CrossRef]
- Allen, M.; Jackson, J.; Walker, R. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics 2004, 23, TC2008. [Google Scholar] [CrossRef]
- Westaway, R. Present-day kinematics of the Middle East and eastern Mediterranean. J. Geophys. Res. 1994, 99, 12071–12090. [Google Scholar] [CrossRef]
- Westaway, R. Kinematic consistency between the Dead Sea Fault Zone and the Neogene and Quaternary left-lateral faulting in SE Turkey. Tectonophysics 2004, 391, 203–237. [Google Scholar] [CrossRef]
- Aktug, B.; Ozener, H.; Dogru, A.; Sabuncu, A.; Turgut, B.; Halicioglu, K.; Yilmaz, O.; Havazli, E. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J. Geodyn. 2016, 94–95, 1–12. [Google Scholar] [CrossRef]
- Bletery, Q.; Cavalié, O.; Nocquet, J.-M.; Ragon, T. Distribution of Interseismic Coupling along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophys. Res. Lett. 2020, 47, e2020GL087775. [Google Scholar] [CrossRef]
- Cavalié, O.; Jónsson, S. Block-like plate movements in eastern Anatolia observed by InSAR. Geophys. Res. Lett. 2014, 41, 26–31. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Karam, G. GPS constraints on continental deformation in the Africa-ArabiaEurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 2006, 111, B05411. [Google Scholar] [CrossRef]
- Walters, R.J.; Parsons, B.; Wright, T.J. Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the block-like behavior of Eastern Anatolia. J. Geophys. Res. 2014, 119, 5215–5234. [Google Scholar] [CrossRef]
- Hussain, E.; Wright, T.J.; Walters, R.J.; Bekaert, D.P.S.; Lloyd, R.; Hooper, A. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nat. Commun. 2018, 9, 1392. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rollins, C.; et al. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Chang, X.; Guo, J.; Wang, X. Detecting the Amount of Eroded and Deposited Sand Using DInSAR. Terr. Atmos. Ocean. Sci. 2011, 22, 187–194. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takada, Y.; Furuya, M.; Murakami, M. Locations and types of ruptures involved in the 2008 Sichuan earthquake inferred from SAR image matching. Geophys. Res. Lett. 2009, 36, L07302. [Google Scholar] [CrossRef]
- Wang, T.; Wei, S.; Jónsson, S. Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake. Geophys. Res. Lett. 2015, 42, 7022–7030. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, G.; Wang, T.; Bürgmann, R. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake. Geophys. Res. Lett. 2017, 44, 1758–1767. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. High-quality three-dimensional displacement fields from new-generation SAR imagery: Application to the 2017 Ezgeleh, Iran, earthquake. J. Geod. 2019, 93, 573–591. [Google Scholar] [CrossRef]
- An, Q.; Feng, G.; He, L.; Xiong, Z.; Lu, H.; Wang, X.; Wei, J. Three-Dimensional Deformation of the 2023 Turkey Mw7.8 and Mw7.7 Earthquake Sequence Obtained by Fusing Optical and SAR Images. Remote Sens. 2023, 15, 2656. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Tao, T.; Zhu, Y.; Qu, X.; Li, Z.; Huang, J.; Song, S. Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone. Remote Sens. 2023, 15, 2618. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosyst. 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Wang, R.; Parolai, S.; Ge, M.; Jin, M.; Walter, T.R.; Zschau, J. The 2011 Mw 9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bull. Seismol. Soc. Am. 2013, 103, 1336–1347. [Google Scholar] [CrossRef]
- Tang, X.; Guo, R.; Xu, J.; Sun, H.; Chen, X.; Zhou, J. Inversion of the Slip Distribution of the 2017 Ms7.0 Jiuzhaigou Earthquake from InSAR. Res. Sq. 2020, preprint. [Google Scholar] [CrossRef]
- Du, Y.; Segall, P.; Gao, H. Dislocations in inhomogeneous media via a moduli perturbation approach: General formulation and two-dimensional solutions. J. Geophys. Res. 1994, 99, 13767–13779. [Google Scholar] [CrossRef]
- Savage, J.C. Displacement field for an edge dislocation in a layered half-space. J. Geophys. Res. 1998, 103, 2439–2446. [Google Scholar] [CrossRef]
- Cattin, R.; Briole, P.; Lyon-Caen, H.; Bernard, P.; Pinettes, P. Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications. Geophys. J. Int. 1999, 137, 149–158. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—User guide. US Geol. Surv. Open-File Rep. 2011, 1060, 2063. [Google Scholar]
- Freed, A.M. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer. Annu. Rev. Earth Planet. Sci. 2004, 33, 335–367. [Google Scholar] [CrossRef]
- Avouac, J.-P. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 233–271. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Fan, X.; Ma, C.; Shan, X. Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Türkiye-Syria Earthquake Doublet Based on SAR Offset Tracking. Remote Sens. 2023, 15, 5443. [Google Scholar] [CrossRef]
- Li, W.; Tan, K.; Lu, X.; Zhang, C.; Li, C.; Han, S. Coseismic Deformation and Fault Slip Distribution of the 2023 Mw 7.8 and Mw 7.5 Earthquakes in Turkey. Earthq. Sci. 2023, preprint. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar] [CrossRef]
- Stein, R.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş.; Elmacı, H.; Çan, T. Active fault database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Alkan, H.; Büyüksaraç, A.; Bektaş, Ö.; Işık, E. Coulomb stress change before and after 24.01.2020 Sivrice (Elazığ) Earthquake (Mw = 6.8) on the East Anatolian Fault Zone. Arab. J. Geosci. 2021, 14, 2648. [Google Scholar] [CrossRef]
- Utkucu, M.; Budakoğlu, E.; Çabuk, M. Teleseismic finite-fault inversion of two Mw = 6.4 earthquakes along the East Anatolian Fault Zone in Turkey: The 1998 Adana and 2003 Bingöl earthquakes. Arab. J. Geosci. 2018, 11, 721. [Google Scholar] [CrossRef]
Orbit | Track | Master | Slave | Imaging Mode | Polarization Mode | Range) |
---|---|---|---|---|---|---|
Ascend | T014 | 28 January 2023 | 9 February 2023 | IW | VV | 25 × 5 m |
Desend | T021 | 29 January 2023 | 10 February 2023 | IW | VV | 25 × 5 m |
Station | Orbit Direction | GPS (cm) | POT (cm) | Residual (cm) |
---|---|---|---|---|
ANTP | ASC | −22.14 | −7.81 | −14.33 |
DES | −38.94 | 16.80 | ||
FEEK | ASC | −6.43 | −3.13 | −3.30 |
DES | −4.58 | −1.85 | ||
KLS1 | ASC | 7.86 | 2.36 | 5.50 |
DES | 4.56 | 3.30 | ||
TUF1 | ASC | −35.24 | −26.56 | −8.68 |
DES | −17.22 | −18.01 | ||
GURU | ASC | −12.23 | 11.21 | |
DES | −23.44 | |||
MLY1 | ASC | −22.57 | −11.63 | |
DES | −10.94 | |||
ADN2 | ASC | 6.12 | 3.41 | 2.70 |
DES | ||||
KAY1 | ASC | 10.31 | 4.47 | 5.84 |
DES | ||||
EKZ1 | ASC | 322.57 | 306.15 | 16.42 |
DES | 313.28 | 9.29 |
Orbit | Residual Mean (cm) | Overall Residual Mean (cm) | RMS (cm) |
---|---|---|---|
ASC | 8.11 | 9.2 | 12.69 |
DES | 10.3 |
Sources | Fault | Rupture Depth (km) | Maximum Slip (m) |
---|---|---|---|
UGUS | EAFZ | 0–15 | 7.96 |
CF and DF | 0–20 | 6.87 | |
Reference 1 [2] | EAFZ | 0–15 | 9.7 |
CF and DF | 0–15 | 10.8 | |
Reference 2 [39] | EAFZ | 0–15 | 8.4 |
CF and DF | 0–15 | 9.6 | |
Reference 3 [1] | EAFZ | 0–12 | 7.7 |
CF and DF | 0–20 | 8.4 | |
Reference 4 [40] | EAFZ | 0–15 | 10.7 |
CF and DF | 0–12 | 11.6 | |
Reference 5 [28] | EAFZ | 0–10 | 9.0 |
CF and DF | 0–15 | 11.7 | |
This study | EAFZ | 0–15 | 7.76 |
CF and DF | 0–15 | 8.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Liu, X.; Liu, R.; Song, M.; Zhu, G.; Chang, X.; Guo, J. Coseismic Slip Distribution and Coulomb Stress Change of the 2023 MW 7.8 Pazarcik and MW 7.5 Elbistan Earthquakes in Turkey. Remote Sens. 2024, 16, 240. https://doi.org/10.3390/rs16020240
Dai X, Liu X, Liu R, Song M, Zhu G, Chang X, Guo J. Coseismic Slip Distribution and Coulomb Stress Change of the 2023 MW 7.8 Pazarcik and MW 7.5 Elbistan Earthquakes in Turkey. Remote Sensing. 2024; 16(2):240. https://doi.org/10.3390/rs16020240
Chicago/Turabian StyleDai, Xiaofeng, Xin Liu, Rui Liu, Menghao Song, Guangbin Zhu, Xiaotao Chang, and Jinyun Guo. 2024. "Coseismic Slip Distribution and Coulomb Stress Change of the 2023 MW 7.8 Pazarcik and MW 7.5 Elbistan Earthquakes in Turkey" Remote Sensing 16, no. 2: 240. https://doi.org/10.3390/rs16020240
APA StyleDai, X., Liu, X., Liu, R., Song, M., Zhu, G., Chang, X., & Guo, J. (2024). Coseismic Slip Distribution and Coulomb Stress Change of the 2023 MW 7.8 Pazarcik and MW 7.5 Elbistan Earthquakes in Turkey. Remote Sensing, 16(2), 240. https://doi.org/10.3390/rs16020240