Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. LST Retrieval
2.4. Urban Green Space Shading Degree Extraction
2.5. Vegetation Density Extraction
2.6. ET Estimation
2.6.1. Net Radiation Calculation
2.6.2. Aerodynamic Resistance Calculation
2.6.3. Surface Resistance Calculation
2.6.4. Soil Heat Flux Calculation
2.6.5. ET Validation
2.7. Urban Green Space Landscape Patterns Extraction
2.7.1. Effective Urban Green Space Definition
2.7.2. Landscape Pattern of Effective Urban Green Space
2.8. Bivariate Spatial Autocorrelation Model
2.9. Principal Component Analysis
3. Results
3.1. LST Retrieval Results
3.2. Green Space Factors Extraction Results
3.3. Statistical Correlation Analysis
3.4. Spatial Correlation Analysis
3.5. Contribution Weights of Urban Green Space Factors on LST
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with Satellite Data of the Urban Heat Island Effects in Asian Mega Cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Kandel, H.; Melesse, A.; Whitman, D. An Analysis on the Urban Heat Island Effect Using Radiosonde Profiles and Landsat Imagery with Ground Meteorological Data in South Florida. Int. J. Remote Sens. 2016, 37, 2313–2337. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Irakulis, I. A Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations Around the World from Sentinel-3 SLSTR Data. Remote Sens. 2020, 12, 2052. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring Surface Urban Heat Island Formation in a Tropical Mountain City Using Landsat Data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Spatial Pattern Impact of Impervious Surface Density on Urban Heat Island Effect: A Case Study in Xuzhou, China. Land 2022, 11, 2135. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Bao, Y. Cool Island Effects of Urban Remnant Natural Mountains for Cooling Communities: A Case Study of Guiyang, China. Sustain. Cities Soc. 2021, 71, 102983. [Google Scholar] [CrossRef]
- Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M.; Sun, Q. (Chayn) Revisiting the Cooling Effects of Urban Greening: Planning Implications of Vegetation Types and Spatial Configuration. Urban For. Urban Green. 2021, 64, 127266. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R. A Brief Review of Health-Related Issues Occurring in Urban Areas Related to Global Warming of 1.5 °C. Curr. Opin. Environ. Sustain. 2018, 30, 123–132. [Google Scholar] [CrossRef]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying Landscape-Metrics Impacts on Urban Green-Spaces and Water-Bodies Cooling Effect: The Study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Xiao, X.D.; Dong, L.; Yan, H.; Yang, N.; Xiong, Y. The Influence of the Spatial Characteristics of Urban Green Space on the Urban Heat Island Effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing Green Space Locations to Reduce Daytime and Nighttime Urban Heat Island Effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A Preliminary Study on the Local Cool-Island Intensity of Taipei City Parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y.; Liew, S.C. Multi-City Comparison of the Relationships between Spatial Pattern and Cooling Effect of Urban Green Spaces in Four Major Asian Cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Within Canopy Temperature Differences and Cooling Ability of Tilia Cordata Trees Grown in Urban Conditions. Build. Environ. 2017, 114, 118–128. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Dong, L. Influence of a Large Urban Park on the Local Urban Thermal Environment. Sci. Total Environ. 2018, 622–623, 882–891. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Pope, R.L.; Martin, C.A.; Brazel, A.J. Observing and Modeling the Nocturnal Park Cool Island of an Arid City: Horizontal and Vertical Impacts. Theor. Appl. Climatol. 2011, 103, 197–211. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R. The Thermal Regime of Urban Parks in Two Cities with Different Summer Climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Fei, Y.; Jiulin, S.; Hongliang, F.; Zuofang, Y.; Jiahua, Z.; Yunqiang, Z.; Kaishan, S.; Zongming, W.; Maogui, H. Comparison of Different Methods for Corn LAI Estimation over Northeastern China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 462–471. [Google Scholar] [CrossRef]
- Weng, Q.; Rajasekar, U.; Hu, X. Modeling Urban Heat Islands and Their Relationship With Impervious Surface and Vegetation Abundance by Using ASTER Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4080–4089. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Qin, K.; Wang, Y.; Chen, L.; Yang, X. Remote Sensing Estimation of Urban Surface Evapotranspiration Based on a Modified Penman–Monteith Model. J. Appl. Remote Sens. 2018, 12, 046006. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Ding, N.; Qin, K.; Yang, X. Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sens. 2020, 12, 578. [Google Scholar] [CrossRef]
- Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study on Hangzhou. Urban For. Urban Green. 2020, 53, 126719. [Google Scholar] [CrossRef]
- Zawadzka, J.E.; Harris, J.A.; Corstanje, R. A Simple Method for Determination of Fine Resolution Urban Form Patterns with Distinct Thermal Properties Using Class-Level Landscape Metrics. Landsc. Ecol. 2021, 36, 1863–1876. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Li, T.; Xu, M.; Xu, Y. How the Landscape Features of Urban Green Space Impact Seasonal Land Surface Temperatures at a City-Block-Scale: An Urban Heat Island Study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Mao, K.; Qin, Z.; Shi, J.; Gong, P. A Practical Split-Window Algorithm for Retrieving Land-Surface Temperature from MODIS Data. Int. J. Remote Sens. 2005, 26, 3181–3204. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Chen, L.; Liao, Z.; Wang, Y.; Wang, B.; Yang, X. A Modified Multi-Source Parallel Model for Estimating Urban Surface Evapotranspiration Based on ASTER Thermal Infrared Data. Remote Sens. 2017, 9, 1029. [Google Scholar] [CrossRef]
- Wu, C. Normalized Spectral Mixture Analysis for Monitoring Urban Composition Using ETM+ Imagery. Remote Sens. Environ. 2004, 93, 480–492. [Google Scholar] [CrossRef]
- Norman, J.M.M.; Kustas, W.P.P.; Humes, K.S.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional Evaporation Estimates from Flux Tower and MODIS Satellite Data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R. Narrowband to Broadband Conversions of Land Surface Albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Spencer, J.W. Fourier Series Representation of the Position of the Sun. Search 1971, 2, 172. [Google Scholar]
- Brutsaert, W. On a Derivable Formula for Long-wave Radiation from Clear Skies. Water Resour. Res. 1975, 11, 742–744. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-Source Model with Radiometric Temperatures for Partial Canopy Cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications; Springer: Berlin, The Netherlands, 1982; ISBN 978-90-277-1247-9. [Google Scholar]
- Kustas, W.P.; Choudhury, B.J.; Moran, M.S.; Reginato, R.J.; Jackson, R.D.; Gay, L.W.; Weaver, H.L. Determination of Sensible Heat Flux over Sparse Canopy Using Thermal Infrared Data. Agric. For. Meteorol. 1989, 44, 197–216. [Google Scholar] [CrossRef]
- Liu, S.; Lu, L.; Mao, D.; Jia, L. Evaluating Parameterizations of Aerodynamic Resistance to Heat Transfer Using Field Measurements. Hydrol. Earth Syst. Sci. 2007, 11, 769–783. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, W10419. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, S.; Xu, Z.; Chen, Y.; Zhu, M. Validation of Remotely Sensed Evapotranspiration over the Hai River Basin, China. J. Geophys. Res. Atmos. 2012, 117, D13113. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N. Spatial Effects of Landscape Patterns of Urban Patches with Different Vegetation Fractions on Urban Thermal Environment. Remote Sens. 2022, 14, 5684. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the Spatial Relationship between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Uddin, M.N.; Saiful Islam, A.K.M.; Bala, S.K.; Islam, G.M.T.; Adhikary, S.; Saha, D.; Haque, S.; Fahad, M.G.R.; Akter, R. Mapping of Climate Vulnerability of the Coastal Region of Bangladesh Using Principal Component Analysis. Appl. Geogr. 2019, 102, 47–57. [Google Scholar] [CrossRef]
- Wu, T. Quantifying Coastal Flood Vulnerability for Climate Adaptation Policy Using Principal Component Analysis. Ecol. Indic. 2021, 129, 108006. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Wu, F.; Ma, H.; Xu, Z.; Jiang, W.; Wang, S.; Yang, J. Spatiotemporal Evolution of the Urban Thermal Environment Effect and Its Influencing Factors: A Case Study of Beijing, China. ISPRS Int. J. Geo-Inf. 2022, 11, 278. [Google Scholar] [CrossRef]
- Liu, R.X.; Kuang, J.; Gong, Q.; Hou, X.L. Principal Component Regression Analysis with Spss. Comput. Methods Programs Biomed. 2003, 71, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Mamuse, A.; Porwal, A.; Kreuzer, O.; Beresford, S. A New Method for Spatial Centrographic Analysis of Mineral Deposit Clusters. Ore Geol. Rev. 2009, 36, 293–305. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Zhang, Y.; Zhan, Y.; Yu, T.; Ren, X. Urban Green Effects on Land Surface Temperature Caused by Surface Characteristics: A Case Study of Summer Beijing Metropolitan Region. Infrared Phys. Technol. 2017, 86, 35–43. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Chen, Y.; Wang, M. Land Surface Temperature Variations and Their Relationship to Fractional Vegetation Coverage in Subtropical Regions: A Case Study in Fujian Province, China. Int. J. Remote Sens. 2020, 41, 2081–2097. [Google Scholar] [CrossRef]
- Elliot, T.; Babí Almenar, J.; Rugani, B. Modelling the Relationships between Urban Land Cover Change and Local Climate Regulation to Estimate Urban Heat Island Effect. Urban For. Urban Green. 2020, 50, 126650. [Google Scholar] [CrossRef]
Satellite | Resolution | Scene ID | Acquisition Date | Acquisition Time (GMT) |
---|---|---|---|---|
Landsat 8 | MSS: 30 m TIRS: 100 m | LC81210362014121LGN00 | 1 May 2014 | 02:42:29 |
LC81220362016278LGN00 | 4 October 2016 | 02:49:11 | ||
LC81220362018123LGN00 | 3 May 2018 | 02:48:04 | ||
GF-2 | PAN: 1 m MS: 4 m | 2872975 | 5 October 2016 | 03:25:48 |
Date | Tair (K) | uz (m/s) | PA (kPa) | RH (%) | λET (W/m2) |
---|---|---|---|---|---|
1 May 2014 | 297.42 | 2.66 | 101.12 | 55.12 | 128.25 |
4 October 2016 | 296.25 | 2.65 | 101.42 | 67.94 | 228.47 |
3 May 2018 | 294.96 | 4.77 | 101.69 | 48.00 | 178.00 |
w (g·cm−2) | τ |
---|---|
0.2–1.6 | 0.9184–0.0725 w |
1.6–4.4 | 1.0163–0.1330 w |
4.4–5.4 | 0.7029–0.0620 w |
Vegetation Abundance Level | Interval |
---|---|
High | fv > fv_mean + std |
Sub-high | fv_mean + 0.5 std < fv ≤ fv_mean + std |
Medium | fv_mean − 0.5 std < fv ≤ fv_mean + 0.5 std |
Sub-low | fv_mean − std < fv ≤ fv_mean − 0.5 std |
Low | fv < fv_mean − std |
Date | Modeled Source Area ET (W/m2) | Latent Heat Flux EC Observations (W/m2) | Error (W/m2) | Error Rate |
---|---|---|---|---|
1 May 2014 | 115.84 | 128.25 | −12.41 | −9.67% |
4 October 2016 | 253.52 | 228.47 | 30.25 | 26.49% |
3 May 2018 | 140.56 | 178.00 | −37.44 | 21.03% |
Green Space Factor | Linear Regression with LST | |||||
---|---|---|---|---|---|---|
1 May 2014 | 4 October 2016 | 3 May 2018 | ||||
r | R2 | r | R2 | r | R2 | |
ET | −0.663 | 0.440 *** | −0.641 | 0.411 *** | −0.668 | 0.446 *** |
GSSD | −0.733 | 0.537 *** | −0.596 | 0.356 *** | −0.744 | 0.554 *** |
VD | −0.639 | 0.408 *** | −0.663 | 0.440 *** | −0.705 | 0.496 *** |
PLAND | −0.658 | 0.434 *** | −0.629 | 0.395 *** | −0.666 | 0.444 *** |
COHESION | −0.542 | 0.293 *** | −0.530 | 0.281 *** | −0.522 | 0.273 *** |
LPI | −0.632 | 0.399 *** | −0.591 | 0.349 *** | −0.651 | 0.423 *** |
AI | −0.471 | 0.222 *** | −0.477 | 0.228 *** | −0.503 | 0.253 *** |
SHAPE_MN | −0.398 | 0.159 *** | −0.348 | 0.121 *** | −0.366 | 0.134 *** |
Green Space Factor | Global Moran’s I with LST | |||||
---|---|---|---|---|---|---|
1 May 2014 | 4 October 2016 | 3 May 2018 | ||||
Moran’s Ⅰ | z-Value | Moran’s Ⅰ | z-Value | Moran’s Ⅰ | z-Value | |
ET | −0.602 *** | −532.780 | −0.576 *** | −499.523 | −0.594 *** | −538.776 |
GSSD | −0.669 *** | −592.922 | −0.536 *** | −478.088 | −0.672 *** | −586.304 |
VD | −0.566 *** | −508.095 | −0.589 *** | −503.935 | −0.625 *** | −560.724 |
PLAND | −0.655 *** | −588.868 | −0.625 *** | −532.130 | −0.662 *** | −599.703 |
COHESION | −0.539 *** | −509.052 | −0.526 *** | −471.284 | −0.519 *** | −501.410 |
LPI | −0.627 *** | −570.053 | −0.586 *** | −511.3242 | −0.645 *** | −578.905 |
AI | −0.470 *** | −448.916 | −0.536 *** | −431.240 | −0.501 *** | −478.517 |
SHAPE_MN | −0.396 *** | −383.750 | −0.307 *** | −332.555 | −0.362 *** | −347.929 |
Date | 1 May 2014 | 4 October 2016 | 3 May 2018 | |||
---|---|---|---|---|---|---|
KMO | 0.796 | 0.808 | 0.788 | |||
Component | F1 | F2 | F1 | F2 | F1 | F2 |
Eigenvalue (ηi) | 3.670 | 2.893 | 3.683 | 2.956 | 3.733 | 3.016 |
Cumulative Percent | 82.04% | 82.99% | 84.37% |
Influence Coefficients | 1 May 2014 | 4 October 2016 | 3 May 2018 | ||||
---|---|---|---|---|---|---|---|
(θij) Normalized Initial Variables (Cj) | θ1j | θ2j | θ1j | θ2j | θ1j | θ2j | |
(C1) GSSD | 0.337 | 0.850 | 0.323 | 0.859 | 0.342 | 0.868 | |
(C2) ET | 0.250 | 0.913 | 0.264 | 0.925 | 0.257 | 0.933 | |
(C3) VD | 0.203 | 0.918 | 0.247 | 0.940 | 0.248 | 0.951 | |
(C4) PLAND | 0.829 | 0.436 | 0.849 | 0.409 | 0.845 | 0.421 | |
(C5) COHESION | 0.906 | 0.231 | 0.883 | 0.269 | 0.901 | 0.241 | |
(C6) LPI | 0.736 | 0.146 | 0.696 | 0.104 | 0.720 | 0.151 | |
(C7) AI | 0.867 | 0.188 | 0.859 | 0.263 | 0.873 | 0.220 | |
(C8) SHAPE_MN | 0.807 | 0.439 | 0.852 | 0.399 | 0.826 | 0.425 |
Date | r | R2 | Standardized Coefficients (βi) | |
---|---|---|---|---|
β1 (F1) | β2 (F2) | |||
1 May 2014 | 0.757 *** | 0.574 *** | −0.092 *** | −0.677 *** |
4 October 2016 | 0.714 *** | 0.509 *** | −0.117 *** | −0.608 *** |
3 May 2018 | 0.762 *** | 0.580 *** | −0.068 *** | −0.702 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment. Remote Sens. 2023, 15, 2414. https://doi.org/10.3390/rs15092414
Zhang Y, Wang Y, Ding N, Yang X. Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment. Remote Sensing. 2023; 15(9):2414. https://doi.org/10.3390/rs15092414
Chicago/Turabian StyleZhang, Yu, Yuchen Wang, Nan Ding, and Xiaoyan Yang. 2023. "Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment" Remote Sensing 15, no. 9: 2414. https://doi.org/10.3390/rs15092414
APA StyleZhang, Y., Wang, Y., Ding, N., & Yang, X. (2023). Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment. Remote Sensing, 15(9), 2414. https://doi.org/10.3390/rs15092414