Detection of Small Target Using Schatten 1/2 Quasi-Norm Regularization with Reweighted Sparse Enhancement in Complex Infrared Scenes
Abstract
:1. Introduction
Motivation
- (1)
- Inspired by the nonconvex low-rank approximation, we use S1/2N regularizer, instead of the traditional nuclear norm, to constrain the background patch-image. The nonconvex regularizer could achieve a tighter approximation of original rank function, obtaining more accurate background estimation.
- (2)
- In order to further improve the accuracy of target detection, an entry-wise weight that is different from the traditional weight is formulated. The entry-wise weight benefits to suppress the remaining salient outliers and preserve the target structure.
- (3)
- The resulted model, called reweighted S1/2N regularization infrared patch-image (RS1/2NIPI), is solved by an effective iterative algorithm based on Alternating Direction Method of Multipliers (ADMM). For the subproblem of S1/2N minimization (S1/2NM), we design a softening half-thresholding algorithm to solve it.
2. IPI Model
3. Small Target Detection Model via S1/2N Regularization
3.1. S1/2N-Induced Low-Rank Model
3.2. Reweighted S1/2NIPI Model
4. Solution of Reweighted S1/2NIPI Model
4.1. Solution of RS1/2NIPI Model
Algorithm 1 The solution of RS1/2NIPI model using ADMM |
1: Input: Original patch-image D, parameter ; |
2: Initialize: ; ; ; ; ; ; k = 0; |
3: While not converged do |
4: Solving by |
5: |
6: Solving by |
7: |
8: Update |
9: |
10: Update , |
11: |
12: |
13: Check the convergence conditions |
14: |
15: Update k |
16: k = k + 1 |
17: end while |
18: Output: A, E; |
4.2. Whole Detection Procedure of the Proposed Model
- (1)
- By using the same local patch construction as IPI model, the original infrared image fD is decomposed into the infrared patch-image D.
- (2)
- Algorithm 1 is employed to perform the target-background separation.
- (3)
- By applying the uniform average of estimators (UAE) reprojection scheme, the background image fA and target image fE are reconstructed from the background patch-image A and target patch-image E.
- (4)
- The final target is separated by an adaptive threshold, which is determined by:
5. Experimental Analysis
5.1. Datasets and Evaluation Criterions
5.2. The Performance Analysis of the Proposed Model
5.2.1. Evaluation on Single and Multiple Targets Images
5.2.2. Comparison to the State-of-the-Art Methods
5.2.3. Evaluation on Structurally Sparse Target Scenes
5.3. Discussion
5.3.1. The Effect of Different Parameters
5.3.2. Convergence and Time-Consuming Analysis
6. Algorithm Advantage and Limitation Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, X.Z.; Chen, Z.; Zhang, Y.; Liu, Z.; Lu, Y. Infrared ship target segmentation based on spatial information improved FCM. IEEE Trans. Cybern. 2016, 46, 3259–3271. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Wen, C.L.; Liu, M.Q. Robust small target co-detection from airborne infrared image sequences. Sensors 2017, 17, 2242. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.P.; Zhou, X. A multiscale fuzzy metric for detecting small infrared targets against chaotic cloudy/sea-sky backgrounds. IEEE Trans. Cybern. 2018, 99, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.Z.; Bi, Y.G. Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–15. [Google Scholar] [CrossRef]
- Gao, C.Q.; Wang, L.; Xiao, Y.X.; Zhao, Q.; Meng, D.Y. Infrared small-dim target detection based on Markov random field guided noise modeling. Pattern Recogn. 2018, 76, 463–475. [Google Scholar] [CrossRef]
- Dong, L.L.; Wang, B.; Ming, Z.; Xu, W.H. Robust infrared maritime target detection based on visual attention and spatiotemporal filtering. IEEE Trans. Geosci. Remote Sens. 2017, 99, 1–14. [Google Scholar] [CrossRef]
- Chang, H.; Yuan, L.; Ramakant, N. Multiple target tracking by learning-based hierarchical association of detection responses. IEEE Trans. Pattern Anal. 2013, 35, 898–910. [Google Scholar]
- Kim, S.; Lee, J. Scale Invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track. Pattern Recogn. 2012, 45, 393–406. [Google Scholar] [CrossRef]
- Deshpande, S.D.; Meng, H.E.; Ronda, V.; Chan, P. Max-mean and Max-median filters for detection of small-targets. Proc. SPIE Int. Soc. Opt. Eng. 1999, 3809, 74–83. [Google Scholar]
- Hadhoud, M.M.; Thomas, D.W. The Two-Dimensional Adaptive LMS (TDLMS) algorithm. IEEE Trans. Circuits Syst. 1988, 35, 485–494. [Google Scholar] [CrossRef]
- Baem, T.W.; Zhang, F.; Kweon, I.S. Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 2012, 55, 137–145. [Google Scholar]
- Zhao, Y.; Pan, H.; Du, C.; Peng, Y.; Zheng, Y. Bilateral two dimensional least mean square filter for infrared small target detection. Infrared Phys. Technol. 2014, 65, 17–23. [Google Scholar] [CrossRef]
- Zeng, M.; Li, J.; Peng, Z. The design of top-hat morphological filter and application to infrared target detection. Infrared Phys. Technol. 2006, 48, 67–76. [Google Scholar] [CrossRef]
- Bai, X.Z.; Zhou, F.G. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn. 2010, 43, 2145–2156. [Google Scholar] [CrossRef]
- Peng, L.B.; Zhang, T.F.; Liu, Y.H.; Li, M.H.; Peng, Z.M. Infrared dim target detection using shearlet’s kurtosis maximization under non-uniform background. Symmetry 2019, 11, 732. [Google Scholar] [CrossRef]
- Chen, C.L.; Li, H.; Wei, Y.T.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Han, J.H.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci. Remote Sens. 2014, 11, 2168–2172. [Google Scholar]
- Qin, Y.; Li, B. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. 2016, 99, 1–5. [Google Scholar] [CrossRef]
- Han, J.H.; Liang, K.; Zhou, B.; Zhu, X.Y.; Zhao, J.; Zhao, L.L. Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci. Remote Sens. 2018, 15, 612–616. [Google Scholar] [CrossRef]
- Chen, Y.W.; Xin, Y.H. An efficient infrared small target detection method based on visual contrast mechanism. IEEE Geosci. Remote Sens. 2016, 13, 962–966. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.P.; Liu, M.L.; Ye, C.H.; Zhou, X. Small infrared target detection based on weighted local difference measure. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4204–4214. [Google Scholar] [CrossRef]
- Wei, Y.T.; You, X.G.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recogn. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Nie, J.Y.; Qu, S.C.; Wei, Y.T.; Zhang, L.M.; Deng, L.Z. An infrared small target detection method based on multiscale local homogeneity measure. Infrared Phys. Technol. 2018, 90, 186–194. [Google Scholar] [CrossRef]
- Wei, Y.T.; You, X.G.; Deng, H. Small infrared target detection based on image patch ordering. Int. J. Wavelets. Multi. 2016, 14, 1640007. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Entropy-based window selection for detecting dim and small infrared targets. Pattern Recogn. 2017, 61, 66–77. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.P.; Liu, M.L.; Ye, C.H.; Zhou, X. Infrared small-target detection using multiscale gray difference weighted image entropy. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 60–72. [Google Scholar] [CrossRef]
- Shirvaikar, M.V.; Trivedi, M.M. A neural network filter to detect small targets in high clutter backgrounds. IEEE Trans. Neural. Net. Lear. 2002, 6, 252–257. [Google Scholar] [CrossRef]
- Takeki, A.; Tu, T.T.; Yoshihashi, R.; Kawakami, R.; Iida, M.; Naemura, T. Combining deep features for object detection at various scales: Finding small birds in landscape images. IPSJ Trans. Comput. Vis. Appl. 2016, 8, 5. [Google Scholar] [CrossRef]
- Bi, Y.G.; Bai, X.Z.; Jin, T.; Guo, S. Multiple feature snalysis for infrared small target detection. IEEE Geosci. Remote Sens. 2017, 14, 1333–1337. [Google Scholar] [CrossRef]
- Qin, Y.; Bruzzone., L.; Gao, C.Q.; Li, B. Infrared small target detection based on facet kernel and random walker. IEEE Trans. Geosci. Remote Sens. 2019, 99, 1–15. [Google Scholar] [CrossRef]
- Xia, C.Q.; Li, X.R.; Zhao, L.Y. Infrared small target detection via modified random walks. Remote Sens. 2018, 10, 2004. [Google Scholar] [CrossRef]
- Gao, C.Q.; Meng, D.Y.; Yang, Y.; Wang, Y.T.; Zhou, X.F.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wu, Y.Q.; Dai, Y.M. Small target detection based on reweighted infrared patch-image model. IET Image Process. 2018, 12, 70–79. [Google Scholar] [CrossRef]
- Dai, Y.M.; Wu, Y.Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef]
- Zhang, L.D.; Peng, Z.M. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Wang, X.Y.; Peng, Z.M.; Kong, D.H.; He, Y.M. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scenes. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5481–5493. [Google Scholar] [CrossRef]
- He, Y.J.; Li, M.; Zhang, J.L.; An, Q. Small infrared target detection based on low-rank and sparse representation. Infrared Phys. Technol. 2015, 68, 98–109. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted l1 minimization. J. Fourier. Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, D.B.; Ye, J.P.; Li, X.L.; He, X.F. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. 2013, 35, 2117–2130. [Google Scholar] [CrossRef]
- Oh, T.H.; Tai, Y.W.; Bazin, J.C.; Kim, H.; Kweon, I.S. Partial sum minimization of singular values in robust PCA: Algorithm and applications. IEEE Trans. Pattern Anal. 2016, 38, 744–758. [Google Scholar] [CrossRef]
- Nie, F.; Huang, H.; Ding, C. Low-rank matrix recovery via efficient schatten p-norm minimization. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; pp. 655–661. [Google Scholar]
- Dai, Y.M.; Wu, Y.Q.; Song, Y.; Guo, J. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values. Infrared Phys. Technol. 2017, 81, 182–194. [Google Scholar] [CrossRef]
- Zhang, L.D.; Peng, L.B.; Zhang, T.F.; Gao, S.Y.; Peng, Z.M. Infrared small target detection via non-convex rank approximation minimization joint l2,1 norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef]
- Zhang, T.F.; Wu, H.; Liu, Y.H.; Peng, L.B.; Yang, C.P.; Peng, Z.M. Infrared small target detection based on non-convex optimization with Lp-norm constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Neural Information Processing Systems (NIPS); The MIT Press: Cambridge, MA, USA, 2009; Volume 58, pp. 289–298. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Liu, L.; Huang, W.; Chen, D.R. Exact minimum rank approximation via schatten p-norm minimization. J. Comput. Appl. Math. 2014, 267, 218–227. [Google Scholar] [CrossRef]
- Xu, Z.B.; Chang, X.; Xu, F.; Zhang, H. L1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neur. Net. Learn. 2012, 23, 1013–1027. [Google Scholar]
- Rao, G.; Peng, Y.; Xu, Z.B. Robust sparse and low-rank matrix decomposition based on S1/2 modeling. Sci. Sin. 2013, 43, 733. [Google Scholar] [CrossRef]
- Hale, E.T.; Yin, W.; Zhang, Y. Fixed-point continuation for l1-minimization: Methodology and convergence. Siam J. Optim. 2008, 19, 1107–1130. [Google Scholar] [CrossRef]
- Bruckstein, A.M.; Donoho, D.L.; Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009, 51, 34–81. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, S.; Wang, Y.; Xu, Z.B. L1/2 regularization: Convergence of iterative half thresholding algorithm. IEEE Trans. Signal. Process. 2013, 62, 2317–2329. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2003, 57, 1413–1457. [Google Scholar] [CrossRef]
- He, B.; Yuan, X. On the O(1/n) convergence rate of the douglas--rachford alternating direction method. SIAM J. Numer. Anal. 2012, 50, 700–709. [Google Scholar] [CrossRef]
Sequences | Frames/Size | Target Description | Background Description |
---|---|---|---|
Sequences 1–4 | 400/ | Single tiny round-shape target. Moves along the clutters edges or buried in the clutters. Significant change of brightness. | Sky scene with strong undulant clutters. Brightness of background varies dramatically. Overall background changes slowly. |
Sequence 5 | 30/ | Single tiny rectangular shape target. Size and shape are almost unchanged. Relatively low signal-to-clutter. | Deep space with floccus clouds. Without bright interference in the background. Approximately noise-free. |
Sequence 6 | 400/ | One target with irregular shape. Moving slowly during the sequence. Size and shape vary over a wide range. | Uniform sea-sky backgrounds with strong ocean waves. |
Single image (g–r) | , , , etc. | Different target number, size and types. Contrast changes drastically. | Different background types, such as cloud clutter, aerial maritime, heavy sea fog. |
Model | Objective Function | Parameter Settings |
---|---|---|
SMSL [36] | patch size: , , | |
IPI [32] | patch size: , sliding size: 10, , , | |
ReWIPI [33] | patch size: , sliding size: 10, , , , , , | |
NIPPS [42] | patch size: , sliding size: 10, , , energy constraint ratio: | |
RIPT [34] | patch size: or ,sliding size: 10, , , h = 10, , | |
RS1/2NIPI | patch size: or , sliding size: 12, , , |
Methods | Indicators | Sequence 1 (10) | Sequence 2 (10) | Sequence 3 (10) | Sequence 4 (10) | Sequence 5 (10) |
---|---|---|---|---|---|---|
SMSL | GLSNR | 2.57 | Inf | Inf | 2.11 | 5.5 |
GSCR | 12.20 | Inf | Inf | 24.35 | 13.24 | |
BSF | 35.42 | Inf | Inf | 44.23 | 105.78 | |
IPI | GLSNR | 290.52 | 70.24 | 220.17 | 208.25 | 2.68 |
GSCR | 6224.76 | 362.61 | 543.22 | 453.41 | 23.24 | |
BSF | 23,945.68 | 549.59 | 16,849.16 | 10,621.32 | 2268.41 | |
ReWIPI | GLSNR | Inf | Inf | Inf | Inf | Inf |
GSCR | Inf | Inf | Inf | Inf | Inf | |
BSF | Inf | Inf | Inf | Inf | Inf | |
NIPPS | GLSNR | 13.12 | 5.48 | 2.62 | 39.23 | 6.97 |
GSCR | 187.23 | 70.65 | 53.51 | 543.78 | 11.69 | |
BSF | 233.74 | 118.36 | 87.37 | 1077.72 | 148.41 | |
RIPT | GLSNR | Inf | Inf | Inf | Inf | Inf |
GSCR | Inf | Inf | Inf | Inf | Inf | |
BSF | Inf | Inf | Inf | Inf | Inf | |
RS1/2NIPI | GLSNR | Inf | Inf | Inf | Inf | Inf |
GSCR | Inf | Inf | Inf | Inf | Inf | |
BSF | Inf | Inf | Inf | Inf | Inf |
Methods | Acronyms | Parameter Settings |
---|---|---|
TopHat method [14] | TopHat | structure shape: square, size |
MaxMedian filter [9] | MaxMedian | support size: N = 1, 3, ..., 9 L = 4, m = 2, n = 2 , g = 0.6 |
Multiscale Patch-based Contrast Measure [22] | MPCM | |
Weighted Local Difference Measure [21] | WLDM | |
Local Saliency Map [20] | LSM |
Methods | Indicators | Sequence 1 (10) | Sequence 2 (10) | Sequence 3 (10) | Sequence 4 (10) | Sequence 5 (10) |
---|---|---|---|---|---|---|
TopHat | GLSNR | 1.90 | 2.03 | 1.55 | 2.27 | 1.22 |
GSCR | 10.85 | 7.76 | 4.84 | 6.93 | 6.40 | |
BSF | 11.16 | 9.00 | 5.85 | 12.89 | 15.12 | |
MaxMedian | GLSNR | 2.95 | 2.59 | 1.78 | 3.55 | 0.25 |
GSCR | 8.57 | 6.29 | 4.77 | 9.17 | 4.50 | |
BSF | 9.21 | 7.24 | 7.32 | 20.14 | 9.73 | |
MPCM | GLSNR | 7.20 | 10.31 | 5.53 | 8.06 | 1.19 |
GSCR | 25.23 | 38.36 | 22.36 | 30.73 | 13.61 | |
BSF | 2403.02 | 4011.92 | 1370.52 | 3968.32 | 539.97 | |
WLDM | GLSNR | 7.98 | 5.11 | 3.69 | 2.18 | 0.44 |
GSCR | 23.42 | 6.78 | 4.13 | 7.36 | 2.83 | |
BSF | 88.15 | 11.32 | 12.99 | 13.08 | 4.13 | |
LSM | GLSNR | 6.90 | 9.12 | 7.83 | 6.95 | 0.91 |
GSCR | 30.09 | 32.30 | 22.27 | 23.38 | 4.61 | |
BSF | 1093.71 | 2840.80 | 877.47 | 678.73 | 213.94 | |
RS1/2NIPI | GLSNR | Inf | Inf | Inf | Inf | Inf |
GSCR | Inf | Inf | Inf | Inf | Inf | |
BSF | Inf | Inf | Inf | Inf | Inf |
Methods | TopHat | MaxMedian | WLDM | MPCM | LSM | SMSL | IPI | ReWIPI | NIPPS | RIPT | RS1/2NIPI |
---|---|---|---|---|---|---|---|---|---|---|---|
Sequence1 | 0.015 | 2.58 | 3.47 | 0.062 | 0.012 | 2.08 | 43.9 | 72.37 | 12.20 | 7.54 | 12.64 |
Sequence 2 | 0.016 | 2.63 | 3.50 | 0.070 | 0.072 | 1.95 | 38.3 | 72.3 | 12.31 | 6.12 | 12.83 |
Sequence 3 | 0.028 | 2.72 | 3.52 | 0.096 | 0.011 | 1.80 | 39.9 | 71.45 | 12.26 | 7.67 | 13.24 |
Sequence 4 | 0.036 | 2.68 | 3.61 | 0.12 | 0.013 | 2.03 | 43.4 | 72.40 | 12.40 | 7.57 | 13.08 |
Sequence 5 | 0.13 | 1.64 | 2.31 | 0.086 | 0.073 | 1.87 | 16.0 | 24.24 | 14.53 | 5.81 | 7.17 |
Sequence 6 | 11.91 | 10.92 | 16.62 | 1.18 | 0.73 | 20.4 | 1133 | 217.42 | 1404 | 54.3 | 78.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Wu, Y.; Dai, Y.; Wang, P. Detection of Small Target Using Schatten 1/2 Quasi-Norm Regularization with Reweighted Sparse Enhancement in Complex Infrared Scenes. Remote Sens. 2019, 11, 2058. https://doi.org/10.3390/rs11172058
Zhou F, Wu Y, Dai Y, Wang P. Detection of Small Target Using Schatten 1/2 Quasi-Norm Regularization with Reweighted Sparse Enhancement in Complex Infrared Scenes. Remote Sensing. 2019; 11(17):2058. https://doi.org/10.3390/rs11172058
Chicago/Turabian StyleZhou, Fei, Yiquan Wu, Yimian Dai, and Peng Wang. 2019. "Detection of Small Target Using Schatten 1/2 Quasi-Norm Regularization with Reweighted Sparse Enhancement in Complex Infrared Scenes" Remote Sensing 11, no. 17: 2058. https://doi.org/10.3390/rs11172058
APA StyleZhou, F., Wu, Y., Dai, Y., & Wang, P. (2019). Detection of Small Target Using Schatten 1/2 Quasi-Norm Regularization with Reweighted Sparse Enhancement in Complex Infrared Scenes. Remote Sensing, 11(17), 2058. https://doi.org/10.3390/rs11172058