Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method
Abstract
:1. Introduction
- A new dataset, namely TenunIkatNet, was used to test several pretrained CNN models to determine their image retrieval performance.
- A modified CNN architecture model that fits the image characteristics of ikat woven fabrics was created.
2. Materials and Methods
2.1. TenunIkatNet Dataset
2.2. Proposed Framework
2.3. Pretrained CNN Model
- ResNet101
- 2.
- VGG16
- 3.
- DenseNet201
- 4.
- InceptionV3
- 5.
- MobileNetV2
- 6.
- Xception
- 7.
- InceptionResNetV2
2.4. Proposed Modified CNN Architecture
2.4.1. Convolution and Max-Pooling Layer
2.4.2. Fully Connected Layer
2.4.3. Activation Functions
2.4.4. Loss Function
2.5. Performance Evaluation
3. Results and Discussion
3.1. Experimental Settings
3.2. Experimental Results
3.2.1. Training Process Evaluation
3.2.2. Image Retrieval Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salma, I.I.R.; Syabana, D.K.; Satria, Y.; Christianto, R. Diversifikasi desain produk tenun ikat nusa tenggara timur dengan paduan teknik tenun dan teknik batik. Din. Kerajinan dan Batik Maj. Ilm. 2018, 35, 85–94. [Google Scholar] [CrossRef]
- Dubey, S.R. A decade survey of content based image retrieval using deep learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2687–2704. [Google Scholar] [CrossRef]
- Tena, S.; Hartanto, R.; Ardiyanto, I. Content-based image retrieval for fabric images: A survey. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 1861–1872. [Google Scholar] [CrossRef]
- Latif, A.; Rasheed, A.; Sajid, U.; Ahmed, J.; Ali, N.; Ratyal, N.I.; Zafar, B.; Dar, S.H.; Sajid, M.; Khalil, T. Content-based image retrieval and feature extraction: A comprehensive review. Math. Probl. Eng. 2019, 2019, 9658350. [Google Scholar] [CrossRef]
- Hameed, I.M.; Abdulhussain, S.H.; Mahmmod, B.M. Content-based image retrieval: A review of recent trends. Cogent Eng. 2021, 8, 1927469. [Google Scholar] [CrossRef]
- Baso, B.; Suciati, N. Temu Kembali Citra Tenun Nusa Tenggara Timur menggunakan Esktraksi Fitur yang Robust terhadap Perubahan Skala, Rotasi, dan Pencahayaan. J. Teknol. Inf. dan Ilmu Komput. 2020, 7, 349–358. [Google Scholar] [CrossRef]
- Lamabelawa, M.I.J.; Informatika, T. Perbandingan ekstraksi fitur tenun ikat NTT berbasis analisis tekstur. J. HOAQ-Teknologi Inf. 2016, 7, 481–488. [Google Scholar]
- Shen, F.; Lin, L.; Wei, M.; Liu, J.; Zhu, J.; Zeng, H.; Cai, C.; Zheng, L. A Large Benchmark for Fabric Image Retrieval. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 247–251. [Google Scholar] [CrossRef]
- Deng, D.; Wang, R.; Wu, H.; He, H.; Li, Q.; Luo, X. Learning deep similarity models with focus ranking for fabric image retrieval. Image Vis. Comput. 2018, 70, 11–20. [Google Scholar] [CrossRef]
- Prasetyo, H.; Akardihas, B.A.P. Batik image retrieval using convolutional neural network. TELKOMNIKA Telecommun. Comput. Electron. Control 2019, 17, 3010–3018. [Google Scholar] [CrossRef]
- Dagher, I.; Barbara, D. Facial age estimation using pre-trained CNN and transfer learning. Multimedia Tools Appl. 2021, 80, 20369–20380. [Google Scholar] [CrossRef]
- Hussain, M.A.I.; Khan, B.; Wang, Z.; Ding, S. Woven Fabric Pattern Recognition and Classification Based on Deep Convolutional Neural Networks. Electronics 2020, 9, 1048. [Google Scholar] [CrossRef]
- Rangkuti, A.H.; Harjoko, A.; Putro, A.E. Content based batik image retrieval. J. Comput. Sci. 2014, 10, 925–934. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Lim, K.; Ling, N. A novel image retrieval algorithm based on transfer learning and fusion features. World Wide Web 2018, 22, 1313–1324. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, N.; Pan, R.; Gao, W. Fabric Retrieval Based on Multi-Task Learning. IEEE Trans. Image Process. 2020, 30, 1570–1582. [Google Scholar] [CrossRef] [PubMed]
- Wicaksono, A.Y.; Suciati, N.; Fatichah, C.; Uchimura, K.; Koutaki, G. Modified Convolutional Neural Network Architecture for Batik Motif Image Classification. IPTEK J. Sci. 2017, 2, 26–30. [Google Scholar] [CrossRef]
- Yang, C.-L.; Harjoseputro, Y.; Hu, Y.-C.; Chen, Y.-Y. An Improved Transfer-Learning for Image-Based Species Classification of Protected Indonesians Birds. Comput. Mater. Contin. 2022, 73, 4577–4593. [Google Scholar] [CrossRef]
- Bai, C.; Huang, L.; Pan, X.; Zheng, J.; Chen, S. Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 2018, 303, 60–67. [Google Scholar] [CrossRef]
- Jose, A.; Lopez, R.D.; Heisterklaus, I.; Wien, M. Pyramid Pooling of Convolutional Feature Maps for Image Retrieval. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 480–484. [Google Scholar] [CrossRef]
- Shah, R.; Bhatti, N.; Akhtar, N.; Khalil, S.; Garcia-Magarino, I. Random patterns clothing image retrieval using convolutional neural network. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 26–27 March 2020. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Rodriguez, P.; Lacoste, A. Tadam: Task dependent adaptive metric for improved few-shot learning. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 2018, pp. 721–731. [Google Scholar]
- Panigrahi, S.; Nanda, A.; Swarnkar, T. A Survey on Transfer Learning. Smart Innov. Syst. Technol. 2021, 194, 781–789. [Google Scholar] [CrossRef]
- Tena, S.; Hartanto, R.; Ardiyanto, I. East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network. In Proceedings of the 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Virtual, 16 December 2021; pp. 150–154. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, N.; Pan, R.; Gao, W. Fabric Image Retrieval System Using Hierarchical Search Based on Deep Convolutional Neural Network. IEEE Access 2019, 7, 35405–35417. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Hao, S. Clothing Identification based on Fused Key Points. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, Suzhou, China, 15–18 March 2019; Volume Part F1481. pp. 116–120. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Ma, J. Large Scale Category-Structured Image Retrieval for Object Identification through Supervised Learning of CNN and SURF-Based Matching. IEEE Access 2020, 8, 57796–57809. [Google Scholar] [CrossRef]
- Tarasenko, A.O.; Yakimov, Y.V.; Soloviev, V.N. Convolutional neural networks for image classification. CEUR Workshop Proc. 2019, 2546, 101–114. [Google Scholar]
- Cai, Z.; Gao, W.; Yu, Z.; Huang, J.; Cai, Z. Feature extraction with triplet convolutional neural network for content-based image retrieval. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 337–342. [Google Scholar] [CrossRef]
- Luo, Z.; Yuan, J.; Yang, J.; Wen, W. Spatial constraint multiple granularity attention network for clothesretrieval. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 859–863. [Google Scholar]
- Luo, Y.; Li, W.; Ma, X.; Zhang, K. Image Retrieval Algorithm Based on Locality-Sensitive Hash Using Convolutional Neural Network and Attention Mechanism. Information 2022, 13, 446. [Google Scholar] [CrossRef]
- Zhang, N.; Shamey, R.; Xiang, J.; Pan, R.; Gao, W. A novel image retrieval strategy based on transfer learning and hand-crafted features for wool fabric. Expert Syst. Appl. 2021, 191, 116229. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014—Conference Track Proceedings, Banff, AB, Canada, 14–16 April 2014; pp. 1–10. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Agrawal, T. Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient; Apress: New York, NY, USA, 2021. [Google Scholar]
- Ahmed, W.S.; Karim, A.A.A. The Impact of Filter Size and Number of Filters on Classification Accuracy in CNN. In Proceedings of the 2020 International Conference on Computer Science and Software Engineering (CSASE 2020), Duhok, Iraq, 16–18 April 2020; pp. 88–93. [Google Scholar] [CrossRef]
- Hannink, J.; Kautz, T.; Pasluosta, C.F.; Barth, J.; Schulein, S.; Gassmann, K.-G.; Klucken, J.; Eskofier, B.M. Mobile Stride Length Estimation With Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2017, 22, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Jin, L.; Yang, W. Toward high-performance online HCCR: A CNN approach with DropDistortion, path signature and spatial stochastic max-pooling. Pattern Recognit. Lett. 2017, 89, 60–66. [Google Scholar] [CrossRef]
- Yang, J.; Yang, G. Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer. Algorithms 2018, 11, 28. [Google Scholar] [CrossRef]
- Liu, M.; Xie, T.; Cheng, X.; Deng, J.; Yang, M.; Wang, X.; Liu, M. FocusedDropout for Convolutional Neural Network. Appl. Sci. 2022, 12, 7682. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Anidhya, A. Understanding Activation Functions in Neural Networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316. [Google Scholar]
- Gordo, A.; Almazán, J.; Revaud, J.; Larlus, D. End-to-End Learning of Deep Visual Representations for Image Retrieval. Int. J. Comput. Vis. 2017, 124, 237–254. [Google Scholar] [CrossRef]
- Prapas, I.; Derakhshan, B.; Mahdiraji, A.R.; Markl, V. Continuous Training and Deployment of Deep Learning Models. Datenbank-Spektrum 2021, 21, 203–212. [Google Scholar] [CrossRef]
Models | Model Size (MB) | Number of Parameters | F1-Score |
---|---|---|---|
ResNet101 | 491.2 | 42,904,056 | 0.998 |
VGG16 | 169.2 | 14,776,248 | 0.032 |
DenseNet201 | 213.1 | 18,552,504 | 0.998 |
InceptionV3 | 253.1 | 22,048,664 | 0.997 |
MobileNetV2 | 28.0 | 2,411,704 | 0.257 |
Xception | 241.7 | 21,107,360 | 0.983 |
Inception ResNetV2 | 625.9 | 54,521,176 | 0.980 |
Modified CNN | 170.9 | 14,927,672 | 0.999 |
Models | Retrieval Error Rate | ||||
---|---|---|---|---|---|
E@k = 1 | E@k = 5 | E@k = 10 | E@k = 20 | E@k = 50 | |
ResNet101 | 0 | 0.246 | 0.333 | 0.428 | 0.578 |
VGG16 | 0 | 0.502 | 0.605 | 0.683 | 0.771 |
DenseNet201 | 0 | 0.113 | 0.188 | 0.286 | 0.453 |
InceptionV3 | 0 | 0.680 | 0.793 | 0.858 | 0.908 |
MobileNetV2 | 0 | 0.730 | 0.830 | 0.885 | 0.926 |
Xception | 0 | 0.275 | 0.380 | 0.485 | 0.629 |
Inception ResNetV2 | 0 | 0.328 | 0.452 | 0.569 | 0.708 |
Modified CNN | 0 | 0.001 | 0.004 | 0.008 | 0.026 |
Models | Retrieval Time (s) | Average Retrieval Time (s) | ||||
---|---|---|---|---|---|---|
Top-1 | Top-5 | Top-10 | Top-20 | Top-50 | ||
ResNet101 | 0.1099 | 0.1006 | 0.0977 | 0.0973 | 0.0971 | 0.1005 |
VGG16 | 0.2225 | 0.2183 | 0.2171 | 0.2171 | 0.2166 | 0.2183 |
DenseNet201 | 0.3225 | 0.3202 | 0.3203 | 0.3199 | 0.3186 | 0.3203 |
InceptionV3 | 0.7749 | 0.7718 | 0.7712 | 0.7716 | 0.7718 | 0.7723 |
MobileNetV2 | 0.3810 | 0.3787 | 0.3783 | 0.3779 | 0.3779 | 0.3788 |
Xception | 0.4404 | 0.4377 | 0.4366 | 0.4366 | 0.4362 | 0.4375 |
Inception ResNetV2 | 0.5089 | 0.5032 | 0.5036 | 0.5037 | 0.5036 | 0.5046 |
Modified CNN | 0.1463 | 0.1423 | 0.1414 | 0.1415 | 0.1416 | 0.1426 |
Models | Accuracy (%) | |||
---|---|---|---|---|
Top-1 | Top-5 | Top-20 | Average | |
VGGNet [8] (Fabric dataset) | 91.14 | 98.43 | 99.88 | 96.48 |
VGGNet (TenunIkatNet) | 100 | 49.79 | 31.70 | 59.83 |
Modified CNN (TenunIkatNet) | 100 | 99.96 | 99.50 | 99.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tena, S.; Hartanto, R.; Ardiyanto, I. Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method. J. Imaging 2023, 9, 165. https://doi.org/10.3390/jimaging9080165
Tena S, Hartanto R, Ardiyanto I. Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method. Journal of Imaging. 2023; 9(8):165. https://doi.org/10.3390/jimaging9080165
Chicago/Turabian StyleTena, Silvester, Rudy Hartanto, and Igi Ardiyanto. 2023. "Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method" Journal of Imaging 9, no. 8: 165. https://doi.org/10.3390/jimaging9080165
APA StyleTena, S., Hartanto, R., & Ardiyanto, I. (2023). Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method. Journal of Imaging, 9(8), 165. https://doi.org/10.3390/jimaging9080165