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Abstract

Technological Innovation Capability (TIC) is an intricate concept which defines the essence of a
firm’s influence in the long run. It is associated with multiple quantitative and qualitative criteria,
and various types of uncertainty can be seen while measuring these criteria. Therefore, to address
this issue, a Belief Rule-Based Expert System (BRBES) can be employed with the capability of han-
dling multiple criteria and their associated uncertainties in an integrated framework. In this article,
two web-based BRBESs, namely conjunctive BRBES, and disjunctive BRBES, have been developed
which are capable of reading data and producing web-based output by taking uncertainties into con-
sideration. Then a comparison has been performed between them to determine the reliability of TIC
evaluation. The results show that the performance of conjunctive BRBES is promising than disjunc-
tive BRBES for technological innovation capability evaluation. In addition, a new learning mech-
anism, namely Belief Rule-Based Adaptive Particle Swarm Optimization (BRBAPSO), has been
developed to support learning in BRBES and a comparison between trained conjunctive and trained
disjunctive BRBES has also been carried out to evaluate TIC, where trained conjunctive BRBES is
found effective than trained disjunctive BRBES.
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1 Introduction

Since firms are confronting expeditious diverting surroundings, they need ceaseless technological inno-
vation and managerial acknowledgment to preserve their competitiveness persistently. Organizational
assets need to be overhauled, and competitiveness should be escalated by a firm to acquire an adequate
degree of coordination to the exterior surroundings. A firm’s response to improve and refine it’s tech-
nological management activities has been accelerated significantly due to globalization of markets and
shortening of product life cycles [1]. Therefore, efficient management of technological resources can
be achieved by identifying and evaluating technologies from various sources. As a result, technological
innovation and organizational assets need to be integrated to ensure competitive advantage and survival
of corporate.
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The predominant basis of market competition lies in technological innovation capabilities. Various
definitions of Technological Innovation Capabilities (TICs) exist which have been debated and empha-
sized different technological capability aspects including the origin of innovation, innovation features
and dimensions, innovation processes, and so on [2], [3]. TICs play a crucial part to initiate firms’
competency, and it is the principal assurance for the sustainable development of an enterprise. Effective
development of technical innovation activities depends on increasing technical innovation capability. So,
it is necessary to assess technological innovation capability. TICs should be monitored recurrently, and
weak capabilities need to be strengthened continuously by a firm to facilitate a competitive advantage.

Numerous organizational tasks, resource combination among several departments and multi-criteria
difficulties exist in technological innovation capabilities [4]. These capabilities play a significant role in
the continuous improvement of firms in a sustainable and competitive market. Due to high uncertainty
and imprecision in technological innovation-related activities of a firm, it is troublesome to assess inno-
vation processes accurately [5]. During the life of technological innovation, uncertainty exists in both
radical and incremental technologies. Moreover, undeveloped and rapidly developing technology creates
a form of technological uncertainty that exceeds when the firm works with more advanced technologies
for which knowledge is more available and stable in the general scientific community [6]. Technologi-
cal, market and enterprise-based uncertainties are three types of uncertainties that exist in technological
innovation [7]. From this perspective, various sources of ambiguities and uncertainties are embedded
in each phase of the technological innovation process. The term ‘degree of uncertainty’ refers to each
period of technological development trajectory, a similar concept that is defined in [8]. Furthermore,
a firm’s organizational management, organizational innovation decisions, and R&D capability related
information are required for the degree to which technological innovation will be successful.

Due to subjectivity and imprecision in technological innovation capabilities of a firm, the process
of TICs evaluation becomes more challenging and complicated. Hence, various viewpoint regarding
different criteria and objectives may be noticed between evaluators. Numerous criteria including both
quantitative and qualitative criteria exist in technological innovation capabilities of a firm. For exam-
ple, the percentage of researchers or number of patents can be evaluated in a quantitative way, while
innovativeness of R&D ideas should be expressed in a qualitative way. Therefore, various types of un-
certainty, including imprecision, vagueness, ambiguity, ignorance, and incompleteness, can be observed
while measuring these criteria. These uncertainties can occur due to lack of human knowledge or in-
sufficient data. To evaluate technological innovation capabilities efficiently, a Belief Rule-Based Expert
System (BRBES) can be used which is capable of handling both quantitative and qualitative data and
their associated uncertainties. BRBES uses Belief Rule Base (BRB) to represent uncertain knowledge,
while Evidential Reasoning (ER) acts as an inference engine to handle both uncertain and heterogeneous
data [9]. In general, there are two types of BRB, namely conjunctive BRB and disjunctive BRB. In
conjunctive BRB, each rule is assumed as conjunctive in nature, while in disjunctive BRB, each rule
is represented using disjunctive assumption. However, due to the conjunctive nature [10] of the rule,
conjunctive BRB suffers from the combinatorial explosion problem, whereas disjunctive BRB does not
suffer from the similar problem and it requires less computational time to process data.

In our previous research, a RESTful API-based BRBES was developed to evaluate TIC, which was
constructed under the conjunctive assumption by covering all possible combinations of referential val-
ues of all attributes, and a comparison between BRBES and various data-driven approaches had been
performed to find out the reliability in evaluating TIC, where the outcome of BRBES was found better
than those data-driven approaches [11]. In this research, the main focus is to perform a comparative
analysis between two types of BRBES, namely conjunctive and disjunctive BRBES, and determine how
conjunctive BRBES is performing compared to disjunctive BRBES for TIC evaluation. To accomplish
this goal, two web-based BRBES, namely conjunctive BRBES and disjunctive BRBES, have been de-
veloped to process heterogeneous data as well as various types of uncertainties for evaluating TIC. A
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web-based BRBES facilitates easy development, deployment, maintenance of the application, and better
user accessibility.

However, the learning parameters of the BRBES have a significant influence to achieve a better result.
In general, these parameters are assigned by experts in the domain or by generating random numbers
[12]. Since these parameters may not be optimal or 100% correct, different optimization techniques have
been used to support learning mechanisms in BRBES to improve the accuracy. However, most of the
existing optimization models of BRBES only take rule weights, attribute weights, and belief degrees
into account without considering the referential values of the antecedent attributes and the utilities of
the consequent attributes. Moreover, BRBES is always trained by using the Optimization Toolbox of
MATLAB algorithm in existing studies, where the efficiency is not ideal for complex problems. Hence,
a new Belief Rule-Based Adaptive Particle Swarm Optimization (BRBAPSO) is proposed, where rule
weights, attribute weights, belief degrees, as well as the referential values of the antecedent attributes
and the utilities of the consequent attributes, are taken into account to improve the input-output modeling
ability of BRBES. Besides, it can ensure a balance between exploration and exploitation in the search
space to obtain satisfactory results for a wide range of optimization problems.

In this research, the proposed BRBAPSO is utilized for training both conjunctive and disjunctive
BRBES. After that, a comparison of performance evaluation between trained conjunctive and trained
disjunctive BRBES has been conducted to find out the effectiveness when evaluating TIC.

The remainder of this article is structured as follows: Section 2 covers related work on technological
innovation capability evaluation and optimization of BRBES, while Section 3 provides an overview of
BRBES and its learning mechanism. Afterward, the proposed BRBAPSO based learning mechanism is
discussed in Section 4. Section 5 describes the web-based BRBES, and Section 6 presents the results
and discussion. Finally, Section 7 concludes the paper and indicates future work.

2 Related Work

Various existing methods can be found which are used previously for TIC evaluation. The related works
are summarized in Table 1.

Statistical regression analysis was used in [13] to determine the TICs of Chinese firms in Beijing
based on seven capabilities, namely learning, R&D, resource allocation, manufacturing, marketing, or-
ganizing, and strategic planning. Here, regression analysis determined the relationship between TICs
and innovation rate, product competitiveness, and sales growth among the firms.

Analytical Hierarchy Process (AHP) together with the fuzzy approach and multi-criteria were used
for TIC evaluation in [14]. Here, the TICs decision structure was made explicit based on evaluators
decision structure by using their subjective judgments. The weight of all aspects and criteria of innovation
performance was determined by Analytical Hierarchy Process (AHP) method, while the fuzzy set theory
was applied to make evaluators subjective judgments, and a firm’s innovation performance was evaluated
by employing fuzzy Multiple Attribute Decision-Making (MADM) method.

A fuzzy measure and non-additive fuzzy integral method were used to assess the performance of syn-
thetic technological innovation capabilities in hi-tech firms in [4]. Here, the principal criteria impacting
TICs at hi-tech firms were identified by employing the non-additive fuzzy integral method.

A fuzzy decision-making approach was applied to evaluate technological innovation capability in
[15]. Here, an Analytic Network Process (ANP) was employed to determine the weight of subjective
judgments, while the best technology innovation enterprise was derived by using the fuzzy VIKOR
algorithm.

Trapezoid fuzzy numbers and extension of Technique for Order Performance by Similarity to Ideal
Solution (TOPSIS) was employed to address the assessment of technological innovation capabilities in
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Table 1: Summary of Related Works

Author Method Specification Limitation

Yam et
al. [13]

Regression analysis TICs are determined based on
seven capabilities, and the rela-
tionship between TICs and inno-
vation rate, product competitive-
ness, and sales growth among the
firms is investigated

No mechanism to ad-
dress uncertainty

Lu et al.
[14]

Analytical Hierarchy
Process (AHP) with
fuzzy Multiple At-
tribute Decision-Making
(MADM) method

The weight of all aspects and cri-
teria of innovation performance
was determined by the AHP
method, while the fuzzy set
theory was applied to make
evaluators’ subjective judgments,
and a firm’s innovation perfor-
mance was evaluated by employ-
ing fuzzy MADM method

Unable to address un-
certainties due to incom-
pleteness and ignorance

Wang et
al. [4]

Non-additive fuzzy inte-
gral method

The principal criteria impacting
TICs at hi-tech firms were iden-
tified by employing the non-
additive fuzzy integral method

Unable to address un-
certainties due to incom-
pleteness and ignorance

Kong et
al. [15]

Analytic Network Pro-
cess (ANP) with fuzzy
VIKOR algorithm

An ANP was employed to de-
termine the weight of subjec-
tive judgments, while the best
technology innovation enterprise
was derived by using the fuzzy
VIKOR algorithm

Unable to address un-
certainties due to incom-
pleteness and ignorance

Cheng
et al.
[16]

Trapezoid fuzzy numbers
and extension of Tech-
nique for Order Perfor-
mance by Similarity to
Ideal Solution (TOPSIS)

This hybrid method was used to
assess the TIC of a printed circuit
board firm

Unable to address un-
certainties due to incom-
pleteness and ignorance

Sumrit
et al.
[17]

Decision Making Trial
and Evaluation Lab-
oratory (DEMATEL)
method

This method was employed to ex-
amine the significance of criteria
and establish a causal connection
among the criteria to evaluate the
TICs of enterprises

No mechanism to ad-
dress uncertainty

[16]. Here, a printed circuit board firm was assessed by using this hybrid method.
Decision Making Trial and Evaluation Laboratory (DEMATEL) method was employed in [17] to

examine the significance of criteria and establish a causal connection among the criteria to evaluate
technological innovation capabilities of enterprises.

Various issues of technological innovation capabilities for specific scenarios are addressed by these
TIC evaluation methods. However, since linear regression and DEMATEL method have no mechanism
to address uncertainty, they failed to address uncertainty in data. Fuzzy-based approaches can handle
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uncertainties due to imprecision, vagueness, and ambiguity, but they cannot address uncertainties due
to incompleteness and ignorance, which can be observed with the associated criteria of technological
innovation capability evaluation.

Therefore, a suitable knowledge representation schema and reasoning mechanism should be used for
addressing different types of uncertainties existing with the criteria of technological innovation capabil-
ity. So, an efficient way of evaluating TIC can be the utilization of Belief Rule Base (BRB).

However, some existing methods can also be found which are used previously for learning in BRBES.
An optimization model for BRBES is first proposed in [18], where a nonlinear optimization solver,
named fmincon in the MATLAB optimization toolbox is used to tune the parameters of BRBES. The
same optimization model is also applied for pipeline leak detection by demonstrating the usefulness
of incorporation of learning in the BRBES in [19]. A recursive algorithm to train BRBES online was
developed in [20], [21]. These algorithms are effective to make BRBES working better. However, when
training BRBES, the referential values of the antecedent attributes and the utilities of the consequent are
not treated as the model’s parameters, but they are predefined by the domain expert. Besides fmincon is a
gradient-based method which is prone to get stuck in local optima and the convergence rate is slower for a
large number of variable. Therefore evolutionary algorithms can be used which are efficient in achieving
the optimal or near-optimal solution for problems with nonlinear and continuous search space [22], [23].
In this paper, a Belief Rule-Based Adaptive Particle Swarm Optimization (BRBAPSO) is utilized for
learning in BRBES by considering rule weights, attribute weights, belief degrees, the referential values
of the antecedent attributes and the utilities of the consequent as the model’s parameters.

3 Belief Rule Based Expert System (BRBES) and Its Learning

A Belief Rule-Based Expert System (BRBES) consists of two main parts, namely a knowledge base
and an inference engine. In BRBES, Belief Rule Base (BRB) is used to represent uncertain knowledge
and create the initial knowledge base, whereas Evidential Reasoning (ER) works as an inference engine
by handling both heterogeneous and uncertain data [24]. The knowledge representation and inference
mechanisms as well as the optimal learning procedure are presented in this section.

3.1 Domain Knowledge Representation in BRBES

A Belief Rule Base (BRB) is an extended version of conventional IF-THEN rule base which can express
more complicated non-linear causal connections under uncertainty. A belief rule comprises two main
parts, namely antecedent and consequent. Each antecedent attribute is associated with referential values,
while belief degrees are embedded with the referential values of the consequent attribute. BRB contains
various learning or knowledge representation parameters, including attribute weight, rule weight, and
belief degrees, which are used to capture uncertainty in data [25], [26]. A belief rule can be defined as
follows:

Rk :

{
IF (A1 is V k

1 ) AND / OR (A2 is V k
2 ) AND / OR ...AND / OR (ATk is V k

Tk
)

THEN C is (C1,β1k),(C2,β2k), ...,(CN ,βNk)

where β jk ≥ 0,
N

∑
j=1

β jk ≤ 1 with rule weight θk,

and attribute weights δk1,δk2, ...,δkTk , k ∈ 1, ...,L
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In the above rule, A1,A2, ...,ATk are the antecedent attributes of the kth rule. V k
i (i = 1, ...,Tk,k =

1, ...,L) is the referential value of the ith antecedent attribute, while C j is the jth referential value of the
consequent attribute. β jk( j = 1, ...N,k = 1, ...L) is the degree of belief to which the consequent reference
value C j is believed to be true. Tk is the total number of antecedent attributes used in the kth rule. L is the
number of total belief rules and N is the number of all possible referential values of the consequent. If

N
∑
j=1

β jk = 1, the kth rule is said to be complete. If the summation of belief degrees is less than 1, the rule

is considered as incomplete, which can happen because of ignorance or incompleteness. In traditional
IF-THEN rule, antecedents and the consequent attribute has a linear relationship while the relationship
is non-linear in case of belief rule. Besides, data collected from interviews or surveys are naturally
non-linear [27]. As a consequence, belief rules can be used in order to represent the data efficiently.

The logical connectives of the antecedent attributes in a belief rule can be either AND or OR, which
represents the conjunctive or the disjunctive assumptions of the rule, respectively. Based on the logical
connectivity of the Belief Rule Base, a BRBES can be named as conjunctive or disjunctive BRBES.

Under the conjunctive assumption, the total number of rules, L is calculated using the referential
values, Ji of the antecedent attributes, Ai of a BRB, as shown in Eq. (1).

L =
Tk

∏
i=1

Ji (1)

Under the disjunctive assumption, the total number of rules,L is equal to the number of referential
values of the antecedent attributes, as shown in Eq. (2). The disjunctive assumption requires that all
attributes have the same number of referential values [28].

L = J1 = J2 = ...= Ji (2)

3.2 BRB Inference Procedures

Evidential Reasoning (ER) can handle heterogeneous data as well as different types of uncertainties such
as incompleteness, ignorance, imprecision, and vagueness [29], [30]. The inference procedures using
the ER approach contain different steps, namely input transformation, rule activation weight calculation,
belief update, and rule aggregation, which is shown in Fig. 1.

During input transformation, the input data is distributed over the referential values of the antecedent
attribute of a rule, as shown in Eq. (3) [31].

H(vi) = (Vi, j,αi, j), j = 1, ...,Ji, i = 1, ...,Tk (3)

Here, the function H transforms the input value of the antecedent attribute to the belief degrees of
its referential values, where Vi j is the jth referential value of the input, and αi j is the belief degree to
the referential value. These transformed values of the input data are known as matching degrees. The
calculation is carried out using Eqs. (4), (5), and (6).

αi, j =
Vi, j+1− vi

Vi, j+1−Vi, j
, Vi, j ≤ vi ≤Vi, j+1, j = 1,2, ...,Ji−1 (4)

αi, j+1 = 1−αi, j, Vi, j ≤ vi ≤Vi, j+1, j = 1,2, ...,Ji−1 (5)

αi,k = 0, k = 1,2, ...,Ji, k 6= j, j+1 (6)

After assigning the matching degree, the rules are called packet antecedent, and they become active.
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Figure 1: Sequence of BRBES Inference Procedures

In order to calculate rule activation weight, the first task is to combine the individual matching de-
grees of the antecedent attributes of a rule using a weighted multiplicative equation for conjunctive
assumption, as shown in Eq. (7).

αkcon j =
Tk

∏
i=1

(αk
i )

δ̄ki (7)

In case of disjunctive assumption, the individual matching degrees are combined using Eq. (8).

αkdis j =
Tk

∑
i=1

(αk
i )

δ̄ki (8)

For both conjunctive and disjunctive assumption,

δ̄ki =
δki

maxi=1,...Tk{δki}
, 0≤ δ̄ki ≤ 1

Here, Tk is the total number of antecedent attributes in the kth rule, δki is the weight of each antecedent
attribute Vi, and δ̄ki is the relative weight of Vi, which is calculated by dividing the weights of Vi by the
maximum weight of all antecedent attributes.

Then, for conjunctive assumption, the combined matching degree of each rule calculated by Eq. (7)
is utilized to determine the activation weight wk for the kth rule, as shown in Eq. (9) [32].

wkcon j =
θkαkcon j

L
∑

i=1
(θiαicon j)

(9)
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Similarly, for disjunctive assumption, the combined matching degree of each rule calculated by Eq.
(8) is used to measure the activation weight wk for the kth rule, as shown in Eq. (10).

wkdis j =
θkαkdis j

L
∑

i=1
(θiαidis j)

(10)

Here, θk represents the rule weight, while αk represents the combined matching degree of the kth

rule. The activation weight of a rule will be zero if that rule is not activated. After calculating the sum of
the rule activation weight of a rule base, the result should be one [27].

In some cases, if there is an absence of data for any antecedent attributes of a rule base because of
ignorance, then the initial belief degrees embedded with each rule in the rule base need to be updated to
address the uncertainty due to ignorance, which is shown in Eq. (11).

β jk = β̄ jk

Tk

∑
t=1

(τ(t,k)
It
∑

i=1
(αti))

Tk

∑
t=1

τ(t,k)
(11)

where, τ(t,k) =

{
1 if the tth attribute is used in defining rule Rk(k = 1, ...,Tk)

0 otherwise

Here, β̄ jk is the original belief degree, while β jk is the updated belief degree of the kth rule. αti

represents the degree to which the input value belongs to an attribute.
All the packet antecedents of the rules need to be aggregated to calculate the output for the input

data of the antecedent attributes using the Evidential Reasoning (ER) algorithm. The aggregation of the
rules can be done by using either analytical or recursive ER algorithms [33], [9]. However, the analytical
approach is preferable instead of the recursive approach, since it is computationally more efficient [34].
The analytical ER computation can be performed using Eq. (12) [35].

β j =

µ×
[

L
∏

k=1
(wkβ jk +1−wk

N
∑
j=1

β jk)−
L
∏

k=1
(1−wk

N
∑
j=1

β jk)

]
1−µ×

[
L
∏

k=1
(1−wk)

] (12)

where, µ =

[ N

∑
j=1

L

∏
k=1

(wkβ jk +1−wk

N

∑
j=1

β jk)− (N−1)×
L

∏
k=1

(1−wk

N

∑
j=1

β jk)

]−1

Here, wk represents the activation weight of the kth rule, whereas β j is the belief degree associated
with one of the consequent reference values.

The uncertainty due to vagueness, imprecision, and ambiguity are addressed by Eq. (12) during the
process of rule aggregation [35]. Now the calculated output value against the input data will be in a
fuzzy form. So this fuzzy value can be converted into a crisp or numerical value by using the utility
score associated with each referential value of the consequent attribute to obtain the final result, which is
shown in Eq. (13).

zi =
N

∑
j=1

µ(O j)β j (13)

Here, zi is the expected numerical value, while µ(O j) is the utility score of each referential value.
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3.3 Optimal Learning Procedure to Train the BRBES

The objective of optimal learning procedure is to train knowledge representation parameters to reduce
errors so that the problem domain can be assessed more reliably. The optimal values of various learning
parameters can be found by the optimal learning model. Rule weights, attribute weights, and belief de-
grees (θk,δi,β jk) in the rule of a belief rule base and the referential values of the antecedent attributes,
and the utilities of the consequent attributes (Ai, j,µ(O j)) are considered as learning parameters, which
are assigned by experts in the domain or by generating random numbers [12]. These parameters have a
significant influence on the outcome of a multi-level hierarchical BRBES with a large number of rules
for achieving a better result [24]. Attribute weights and rule weights determine the importance of the
corresponding antecedent attributes and rules, whereas the uncertainty of the output is represented by
the belief degrees of the consequent attribute. The corresponding position of the belief rules in the input
variable domain is determined by referential values of the antecedent attributes, and the value of the final
output is determined by the utilities of the consequent attributes. Hence, the learning parameters are
crucial for the BRB inference mechanism. However, these parameters may not be optimal or 100% cor-
rect. Therefore, the aim of optimal learning in BRBES is to obtain the optimal set of learning parameters
(θk,δi,β jk,Ai, j,µ(O j)) that will reduce the discrepancy or error ζ (P) between the output from BRBES,
which is known as simulated output (zm), and the output from the real system, known as observed output
(z̄m) as shown in Fig. 2.

Figure 2: Optimal Learning Process of the BRB

It is presumed that there are M cases in a training sample, where input is um, observed output is z̄m,
and simulated output is zm (m = 1, ...,M). The error, ζ (P) is calculated using Eq. (14).

ζ (P) =
1
M

M

∑
m=1

(zm− z̄m)
2 (14)

To minimize the error ζ (P), the optimization of the values of the learning parameters is performed
as defined in Eq. (15).

min
P

ζ (P) (15)

P = P(θk,δi,β jk,Ai, j,µ(O j))

The optimal learning model to train the BRBES consists of three steps, namely construction of the
objective function, setting constraints for the learning parameters, and optimizing the learning parameters
(θk,δi,β jk,Ai, j,µ(O j)) based on the training dataset. Eqs. (12), and (13) are used to construct the ob-
jective function for training the BRBES. Then, the constraints are set for rule weights, attribute weights,
belief degrees, referential values of the antecedent attributes and utilities of the consequent attributes.
The following constraints are considered for each of the learning parameters:

• Rule weights, θk (k = 1, ..,L): 0 ≤ θk ≤ 1;
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• Antecedent attribute weights, δk (k = 1, ..,L): 0 ≤ δk ≤ 1;

• Consequent belief degrees for the kth rule, β jk ( j = 1, ...,N,k = 1, ...,L):
0 ≤ β jk ≤ 1;

N
∑
j=1

β jk = 1;

• Referential values of antecedent attributes, Ai, j (i = 1, ...,Tk, j = 2,3, ..,Ji−1):
lbi < Ai, j < ubi;
Ai,1 = lbi;
Ai,Ji = ubi;

• Utilities of the consequent attributes, µ(O j) ( j = 2, ..,N−1):
l < µ(O j) < u;
µ(O1) = l;
µ(ON) = u;

Here, lbi and ubi are the lower bound and the upper bound of Ai, j, while l and u are the lower bound
and the upper bound of µ(O j) respectively. Finally, the optimal values of the learning parameters are
obtained by using the optimization model of BRBES based on the training dataset.

4 Belief Rule Based Adaptive Particle Swarm Optimization (BRBAPSO)

In this section, a brief description of BRBAPSO and the repair technique for handling constraint of belief
degrees are discussed.

4.1 BRBAPSO

Particle Swarm Optimization (PSO) is a stochastic and population-based meta-heuristic algorithm. In
PSO, a population or swarm contains a set of individuals, where each individual represents a possible
solution to the problem, referred to as a particle. Three indicators, namely the position, the velocity, and
the fitness value, characterize each particle. A number of particles are appointed by PSO, which move
around in the search space to find the best solution. The velocity and the position is updated by using
Eqs. (16) and (17).

vid = w ∗ vid + c1 ∗ rand1() ∗ (pid − xid) + c2 ∗ rand2() ∗ (pgd − xid) (16)

xid = xid + vid (17)

In the above equations, vid and xid are the velocity and the position of the dth dimension of the particle
i(i = 1,2, ...,SwarmSize). w is the inertia weight, c1 is the cognitive factor, and c2 is the social factor.
rand1() and rand2() are two random numbers in the range [0,1]. pi = (pi1, pi2, ..., pid) is the optimal
position of the ith particle, and pg = (pg1, pg2, ..., pgd) is the global optimal position of all particles.

The velocity is restricted in the range of the velocity boundary [Vmin,Vmax] and the position is also
restricted in the range of the search space [Xmin,Xmax] as shown in Eqs. (18), (19):

vid =

{
Vmax, if vid >Vmax

Vmin, if vid <Vmin
(18)
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xid =

{
Xmax, if xid > Xmax

Xmin, if xid < Xmin
(19)

The three parameters, namely inertia weight (w), cognitive factor (c1), and social factor(c2) have
a great impact on the performance of PSO. These parameters can be adapted dynamically to improve
the performance of PSO. It is suggested that changing the values of w, c1, and c2 dynamically during
each iteration of PSO can produce better results. Therefore, a BRBES based PSO parameter adaptation
algorithm is proposed, named Belief Rule-Based Adaptive Particle Swarm Optimization (BRBAPSO),
which can change the value of these parameters dynamically during each iteration of the algorithm.

In BRBAPSO, the values of w, c1, and c2 are initially taken as 1, 2.5, and 1.5 respectively. Then after
the first iteration, normalized diversity of swarm and normalized diversity of velocity are supplied as
inputs to BRBES. Afterward, based on the Belief Rule Base and using Evidential Reasoning approach,
new values of w, c1, and c2 are produced by BRBES as outputs after the first iteration. This process
continues until the current iteration number reaches the predetermined maximum iteration number.

First, the diversity of swarm is calculated as the average of the Euclidean measure of distance between
each particle and the jth dimension over all particles, as shown in Eq. (20).

DiversitySwarm, ds =
1
Ns

Ns

∑
i=1

√√√√ Nx

∑
j=1

(xi j(t)− x̄ j(t))2 (20)

where, x̄ j(t) =

Ns

∑
i=1

xi j(t)

Ns

Then the diversity of velocity is calculated as the average of the Euclidean measure of velocity
between each particle and the jth dimension over all particles, as shown in Eq. (21).

DiversityVelocity, dv =
1
Ns

Ns

∑
i=1

√√√√ Nx

∑
j=1

(vi j(t)− v̄ j(t))2 (21)

where, v̄ j(t) =

Ns

∑
i=1

vi j(t)

Ns

Afterward, the diversity of swarm and the diversity of velocity is normalized in the range [0,1], as
shown in Eqs. (22) and (23).

Normalized Diversity of Swarm, nds ={
0, if Min DiverSwarm = Max DiverSwarm
DiversitySwarm−Min DiverSwarm

Max DiverSwarm−Min DiverSwarm , if Min DiverSwarm 6= Max DiverSwarm
(22)

Normalized Diversity of Velocity, ndv ={
0, if Min DiverVel = Max DiverVel
DiversityVelocity−Min DiverVel

Max DiverVel−Min DiverVel , if Min DiverVel 6= Max DiverVel
(23)
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Here, Min DiverSwarm and Max DiverSwarm are the minimum and maximum diversity of swarm,
while Min DiverVel and Max DiverVel are the minimum and maximum diversity of velocity respectively.

Table 2 shows the referential values and utility values of both antecedent attributes and consequent
attributes, which are used in BRBES for BRBAPSO, while the Belief Rule Base used by BRBES is
shown in Table 3.

Table 2: Details of BRBES for BRBAPSO

(a) Antecedent Attributes

Antecedent Attributes
nds ndv

Referential Values High Medium Low High Medium Low
Utility Values 1.00 0.50 0.01 1.00 0.50 0.01

(b) Consequent Attributes

Consequent Attributes
w c1 c2

Referential Values High Medium Low High Medium Low High Medium Low
Utility Values 1.0 0.7 0.4 2.5 2.0 1.5 1.5 2.0 2.5

Table 3: Belief Rule Base for BRBAPSO

Rule ID Rule Weight IF THEN (w/c1/c2)

nds ndv High Medium Low

1 1 High High 1 0 0

1 1 High Medium 0.5 0.5 0

1 1 High Low 0 1 0

1 1 Medium High 0.5 0.5 0

1 1 Medium Medium 0 1 0

1 1 Medium Low 0 0.5 0.5

1 1 Low High 0 1 0

1 1 Low Medium 0 0.5 0.5

1 1 Low Low 0 0 1

4.2 Repair Technique for Handling Constraint of Belief Degrees

In order to deal with the constraint of belief degrees, repair technologies have been used inspired by [36],
[37]. For belief degrees, they can satisfy constraints as shown in Eq. (24).

β
k =

[
β1,k,β2,k, ...,βN,k

]/ N

∑
j=1

β j,k (24)

According to the above discussion, the procedure of BRBAPSO is summarized as follows:
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Step 1: Generate the initial population randomly according to the characteristics of parameters in the
vector P on the basis of the constraints and initialize the initial velocity for each particle as zero.

Step 2: Evaluate the objective function for each particle and set them as their own local optimal solution.

Step 3: The particle that has the minimum value for objective function is selected as the global solution.

Step 4: Initialize the values of w, c1, and c2 as 1.0, 2.5, and 1.5 respectively.

Step 5: If current iteration number is greater than one:

(a) Calculate normalized diversity of swarm and normalized diversity of velocity based on
Eqs. (22) and (23).

(b) Calculate the parameters using BRBAPSO.

Step 6: Update the velocity based on the parameters by Eq. (16) and the position of all particles by Eq.
(17), check the velocity limit using Eq. (18), handle constraint of belief degrees by Eqs. (24)
and check the position limit using Eq. (19).

Step 7: Evaluate the objective function for each particle and check whether the value of the particle for
the objective function is better than it’s own local optimal solution. If so, update local optimal
solution.

Step 8: Again, the particle that has the minimum value for objective function is selected as the global
solution

Step 9: Check whether the current iteration number reaches the predetermined maximum iteration num-
ber. If satisfied, the iteration of BRBAPSO is stopped, otherwise go to step 5.

5 BRBES to Evaluate Technological Innovation Capability

This section describes the architecture of the web-based conjunctive and disjunctive BRBES for evaluat-
ing technological innovation capability.

5.1 Architecture of Web-Based BRBES

The web-based BRBES follows a three-layer architecture model which are data management layer, ap-
plication layer, and interface layer. The architecture of the web-based BRBES is represented in Fig.
3.

Figure 3: Architecture of the Web-Based Belief Rule-Based Expert System
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5.1.1 Data Management Layer

Data management layer is accountable to create the initial rule base using the data. The initial BRB is
the knowledge base of the system which is created in the data management layer. A BRB framework
is created manually to construct the knowledge base by taking the criteria associated with technological
innovation capability evaluation, which is shown in Fig. 4. Five aspects and their associated criteria have
been considered for TIC evaluation in this framework. These aspects and criteria are defined in [4].

(a)

(b)

Figure 4: BRB Framework to Evaluate Technological Innovation Capability

5.1.2 Application Layer

Application layer contains inference engine with procedures such as input transformation, rule activation
weight calculation, belief update, and rule aggregation. The input of the application layer is the initial
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BRB from the data management layer, and it runs the inference procedure on it. The BRB tree is multi-
level, so a tree traversal algorithm is used [11] which can traverse the whole BRB tree from bottom to
top and generate the result of the top node by calculating the subtrees gradually.

5.1.3 Interface Layer

The interface layer is used to display the system output in a human-readable way that can be accessed
by the users via a web interface. A graphical user interface (GUI) has been built for the BRBES, which
facilitates the interaction between the user and the system by giving a visual platform. The GUI of
BRBES for technological innovation capability evaluation is shown in Fig. 5.

In Fig. 5, the GUI shows the data for the antecedent attributes (leaf nodes) of the BRB framework
as well as the evaluation result of the top node x30 (Overall performance) and the result for the sub-rule
base x25 (R&D capabilities), x26 (Innovation decision capabilities), x27 (Marketing capabilities), x28
(Manufacturing capabilities), and x29 (Capital capabilities). There are two parts of the result for each
node, which are consequence values and crisp value.

6 Results and Discussion

In order to increase accuracy and decrease error for technological innovation capability evaluation, data
are collected from multi-source databases. It is arduous to collect all the quantitative data from each
high-tech firm because standard financial statistics of many high-tech firms do not exist, and the data is
treated confidentially. Hence, each high-tech firm’s annual operation report from different sources are
used to collect the quantitative data. Different surveys are conducted to collect the qualitative data where
the senior manager of each high-tech firm was asked to evaluate the current technological innovation
performance level. Based on these sources, 100 firms data are collected. The data are considered as good
enough, as sample sizes in between 30 and 500 data points are considered appropriate for most research
[38]. Based on the data, technological innovation capability of each high tech firm is evaluated using
both conjunctive and disjunctive BRBES. Then a comparison has been performed between conjunctive
and disjunctive BRBES to determine the reliability in evaluating technological innovation capability.

The reliability of one technique over other techniques can be acquired by evaluating, comparing, and
assessing the accuracy of their results. Receiver Operating Characteristic (ROC) curves give a compre-
hensive and visible representation of evaluation, comparison, and assessment of various techniques [39].
Hence, it is broadly used in numerous domains, namely clinical applications, atmospheric science, and
many others [40]. Therefore, ROC curves have been considered in this research to assess the accuracy
and the reliability of the conjunctive BRBES in comparison to the disjunctive BRBES. The accuracy of
a result is measured by utilizing the Area Under Curve (AUC) of ROC.

Fig. 6 shows ROC curves for conjunctive BRBES and disjunctive BRBES, while Table 4 shows the
AUC and the confidence interval (CI) for these two BRBES.

Table 4: Comparison of AUC of Conjunctive BRBES and Disjunctive BRBES

Test Result Std. Asymptotic Asymptotic 95% Confidence Interval
Variable(s) AUC Error Sig. Lower Bound Upper Bound

Conjunctive BRBES 0.955 0.021 0.000 0.913 0.996
Disjunctive BRBES 0.894 0.038 0.000 0.819 0.969

From Table 4, it can be noticed that the highest value of AUC is for conjunctive BRBES because
when evaluating technological innovation capability, antecedent attributes co-influence the results in a
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(a)

(b)

Figure 5: GUI of BRBES for Technological Innovation Capability Evaluation

conjunctive fashion. However, this is not the case with disjunctive BRBES as it considers the antecedent
attributes separately, and they co-influence the results in a disjunctive fashion. That’s why the AUC
for conjunctive BRBES is greater than disjunctive BRBES. Besides, the range of confidence interval is
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Figure 6: Comparison of Results of Conjunctive BRBES and Disjunctive BRBES Using ROC Curves

highest, and the standard error is lowest for conjunctive BRBES than disjunctive BRBES. Therefore,
it can be said that conjunctive BRBES is performing better than disjunctive BRBES when evaluating
technological innovation capability.

Now, to facilitate the learning for both conjunctive and disjunctive BRBES, the collected data have
been separated into training data and test data. The training data is employed to train both conjunctive
and disjunctive BRBES using BRBAPSO, while the test data is used to evaluate the performance of the
trained conjunctive BRBES and the trained disjunctive BRBES.

Fig. 7 shows ROC curves for the trained conjunctive BRBES and the trained disjunctive BRBES,
while Table 5 shows the AUC and the confidence interval (CI) for these two trained BRBES.

Table 5: Comparison of AUC of Trained Conjunctive BRBES and Trained Disjunctive BRBES

Test Result Std. Asymptotic Asymptotic 95% Confidence Interval
Variable(s) AUC Error Sig. Lower Bound Upper Bound

Trained Conjunctive BRBES 0.938 0.043 0.001 0.853 1.000
Trained Disjunctive BRBES 0.894 0.084 0.002 0.731 1.000

From Table 5, it can be seen that the highest value of AUC is for trained conjunctive BRBES because
of its better determination of the learning parameters based on BRBAPSO optimization. However, for
trained disjunctive BRBES, the best optimal values of the learning parameters can not be determined
based on BRBAPSO optimization. That’s why the AUC for trained conjunctive BRBES is greater than
trained disjunctive BRBES. Besides, the range of confidence interval is highest, and the standard error
is lowest for trained conjunctive BRBES than trained disjunctive BRBES. Therefore, it can be said that
trained conjunctive BRBES is performing better than trained disjunctive BRBES for TIC evaluation.
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Figure 7: Comparison of Results of Trained Conjunctive BRBES and Trained Disjunctive BRBES Using
ROC Curves

7 Conclusion

In this paper, two web-based BRBES, namely conjunctive BRBES, and disjunctive BRBES, have been
presented for evaluating technological innovation capability. These two expert systems will facilitate
a firm manager to evaluate and determine his firm’s innovation capabilities, which will have a great
impact to improve a firm’s performance by reducing overall uncertainty associated with technological
innovation. In addition, a comparison has been conducted to determine how conjunctive BRBES is
performing better compared to disjunctive BRBES. Moreover, a Belief Rule-Based Adaptive Particle
Swarm Optimization (BRBAPSO) is used for learning in both conjunctive and disjunctive BRBES, where
trained conjunctive BRBES performs better than trained disjunctive BRBES.

However, since the dataset used in this research is not quite large, more data from other firms can
be considered if accessible and more pertinent criteria can also be examined for evaluating technological
innovation capability.
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