@inproceedings{muller-etal-2023-gender,
title = "The Gender-{GAP} Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages",
author = "Muller, Benjamin and
Alastruey, Belen and
Hansanti, Prangthip and
Kalbassi, Elahe and
Ropers, Christophe and
Smith, Eric and
Williams, Adina and
Zettlemoyer, Luke and
Andrews, Pierre and
Costa-juss{\`a}, Marta R.",
editor = "Koehn, Philipp and
Haddow, Barry and
Kocmi, Tom and
Monz, Christof",
booktitle = "Proceedings of the Eighth Conference on Machine Translation",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wmt-1.48/",
doi = "10.18653/v1/2023.wmt-1.48",
pages = "536--550",
abstract = "Gender biases in language generation systems are challenging to mitigate. One possible source for these biases is gender representation disparities in the training and evaluation data. Despite recent progress in documenting this problem and many attempts at mitigating it, we still lack shared methodology and tooling to report gender representation in large datasets. Such quantitative reporting will enable further mitigation, e.g., via data augmentation. This paper describes the Gender-Gap Pipeline (for Gender-Aware Polyglot Pipeline), an automatic pipeline to characterize gender representation in large-scale datasets for 55 languages. The pipeline uses a multilingual lexicon of gendered person-nouns to quantify the gender representation in text. We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation. Having unbalanced datasets may indirectly optimize our systems towards outperforming one gender over the others. We suggest introducing our gender quantification pipeline in current datasets and, ideally, modifying them toward a balanced representation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muller-etal-2023-gender">
<titleInfo>
<title>The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Muller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Belen</namePart>
<namePart type="family">Alastruey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prangthip</namePart>
<namePart type="family">Hansanti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elahe</namePart>
<namePart type="family">Kalbassi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Ropers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adina</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Andrews</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender biases in language generation systems are challenging to mitigate. One possible source for these biases is gender representation disparities in the training and evaluation data. Despite recent progress in documenting this problem and many attempts at mitigating it, we still lack shared methodology and tooling to report gender representation in large datasets. Such quantitative reporting will enable further mitigation, e.g., via data augmentation. This paper describes the Gender-Gap Pipeline (for Gender-Aware Polyglot Pipeline), an automatic pipeline to characterize gender representation in large-scale datasets for 55 languages. The pipeline uses a multilingual lexicon of gendered person-nouns to quantify the gender representation in text. We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation. Having unbalanced datasets may indirectly optimize our systems towards outperforming one gender over the others. We suggest introducing our gender quantification pipeline in current datasets and, ideally, modifying them toward a balanced representation.</abstract>
<identifier type="citekey">muller-etal-2023-gender</identifier>
<identifier type="doi">10.18653/v1/2023.wmt-1.48</identifier>
<location>
<url>https://aclanthology.org/2023.wmt-1.48/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>536</start>
<end>550</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages
%A Muller, Benjamin
%A Alastruey, Belen
%A Hansanti, Prangthip
%A Kalbassi, Elahe
%A Ropers, Christophe
%A Smith, Eric
%A Williams, Adina
%A Zettlemoyer, Luke
%A Andrews, Pierre
%A Costa-jussà, Marta R.
%Y Koehn, Philipp
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Monz, Christof
%S Proceedings of the Eighth Conference on Machine Translation
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F muller-etal-2023-gender
%X Gender biases in language generation systems are challenging to mitigate. One possible source for these biases is gender representation disparities in the training and evaluation data. Despite recent progress in documenting this problem and many attempts at mitigating it, we still lack shared methodology and tooling to report gender representation in large datasets. Such quantitative reporting will enable further mitigation, e.g., via data augmentation. This paper describes the Gender-Gap Pipeline (for Gender-Aware Polyglot Pipeline), an automatic pipeline to characterize gender representation in large-scale datasets for 55 languages. The pipeline uses a multilingual lexicon of gendered person-nouns to quantify the gender representation in text. We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation. Having unbalanced datasets may indirectly optimize our systems towards outperforming one gender over the others. We suggest introducing our gender quantification pipeline in current datasets and, ideally, modifying them toward a balanced representation.
%R 10.18653/v1/2023.wmt-1.48
%U https://aclanthology.org/2023.wmt-1.48/
%U https://doi.org/10.18653/v1/2023.wmt-1.48
%P 536-550
Markdown (Informal)
[The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages](https://aclanthology.org/2023.wmt-1.48/) (Muller et al., WMT 2023)
ACL
- Benjamin Muller, Belen Alastruey, Prangthip Hansanti, Elahe Kalbassi, Christophe Ropers, Eric Smith, Adina Williams, Luke Zettlemoyer, Pierre Andrews, and Marta R. Costa-jussà. 2023. The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages. In Proceedings of the Eighth Conference on Machine Translation, pages 536–550, Singapore. Association for Computational Linguistics.