计算机科学 ›› 2019, Vol. 46 ›› Issue (6): 218-223.doi: 10.11896/j.issn.1002-137X.2019.06.033

• 人工智能 • 上一篇    下一篇

基于正态云相似度的语言型多属性群决策方法

徐聪, 潘小东   

  1. (西南交通大学数学学院 成都610031)
  • 收稿日期:2018-05-04 发布日期:2019-06-24
  • 作者简介:徐 聪(1992-),女,硕士生,主要研究方向为智能信息处理、云模型,E-mail:[email protected];潘小东(1979-),男,副教授,主要研究方向为模糊信息处理的数学基础理论,E-mail:[email protected]
  • 基金资助:
    国家自然科学基金项目(61473239)资助。

Linguistic Multi-attribute Group Decision Making Method Based on Normal Cloud Similarity

XU Cong, PAN Xiao-dong   

  1. (School of Mathematics,Southwest Jiaotong University,Chengdu 610031,China)
  • Received:2018-05-04 Published:2019-06-24

摘要: 在分析已有正态云模型相似性度量的不足的基础上,综合考虑正态云的形状相似度和位置相似度,提出了一种新的正态云相似性度量方法,并对其性质进行了证明。与已有方法相比,该方法具有很强的区分性。将提出的正态云相似性度量方法应用于语言型多属性群决策中,首先依据正态分布规律将语言变量转化为正态云;其次通过云加权算术平均算子CWAA实现信息集结;最后依据VIKOR排序方法,计算方案属性与最优云、最差云的综合相似度,以实现方案排序。通过算例分析了所提方法的可行性和有效性。

关键词: 多属性群决策, 相似度, 语言变量, 正态云

Abstract: On the basis of analyzing the inadequacies of existed similarity measures between normal clouds,through synthetically considering the shape similarity and position similarity of normal clouds,this paper proposed a new similarity measure between normal clouds,and proved its characteristics.The comparison results with other methods demonstrate the stronger discrimination of the proposed method.The proposed normal cloud similarity measurement method was applied to the linguistic multi-attribute group decision.Firstly,the linguistic variables is transformed into a normal cloud according to the normal distribution law.Secondly,information aggregation is realized by means of cloud weighted arithmetic mean operator.Finally,according to the VIKOR method,the scheme is ranked by the comprehensive similarity of the optimal cloud and the worst cloud.The feasibility and validity of this method were analyzed through an example in this paper.

Key words: Linguistic variables, Multi-attribute group decision making, Normal cloud, Similarity

中图分类号: 

  • TP391
[1]DELGADO M,VERDEGAY J L,VILA M A.A Model for linguistic partial information in decision-making problem[J].International Journal of Intelligent Systems,1994,9(4):365-378.
[2]FAN Z P,XIAO S H.The consistency and ranking method for comparison matrix with linguistic assessment [J].Systems Engineering Theory&Practice,2002,22(5):87-91.(in Chinese)
樊治平,肖四汉.基于自然语言符号表示的比较矩阵的一致性及排序方法 [J].系统工程理论与实践,2002,22(5):87-91.
[3]CHEN S M,HONG J A.Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets[J].Information Sciences,2014,286:63-74.
[4]DONG Y C,LI C C,HERRERA,et al.Connecting the linguistic hierarchy and the numerical scale for the 2-tuple linguistic model and its use to deal with hesitant unbalanced linguistic information [J].Information Sciences,2016,367:259-278.
[5]LIU P,CHEN S M.Multiattribute group decision making based on intuitionistic 2-tuple linguistic information [J].Information Sciences,2018,430:599-619.
[6]李德毅,杜鹢.不确定性人工智能(第2版)[M].北京:国防工业出版社,2014:50-51.
[7]ZHANG Y,ZHAO D N,LI D Y.The similar cloud andthe measurement method[J].Information and Control,2004,33(2):129-132.(in Chinese)
张勇,赵东宁,李德毅.相似云及其度量分析方法[J].信息与控制,2004,33(2):129-132.
[8]LI T Z,YANG X L.Risk Assessment Model for Water and Mud Inrush in Deep andLongTunnels Based on Normal Grey Cloud Clustering Method[J].Korean Society of Civil Engineers,2018,22(5):1991-2001.
[9]PENG B,ZHOU J M,PENG D H.Cloud model based approach to groupdecision making with uncertain purelinguistic information[J].Journal of Intelligent & Fuzzy Systems,2017,32(3):1959-1968.
[10]PENG H G,WANG J Q.Cloud decision model for selecting sustainable energy crop based on linguisticintuitionistic information[J].International Journal of Systems Science,2017,48(15):3316-3333.
[11]LIU P D,LIU X.Multi-attribute Group Decision-Making Method Based on Cloud Distance Operators With Linguistic Information[J].International Journal of Fuzzy Systems,2017,19(4):1011-1024.
[12]CAI S B,FANG W,ZHAO J,et al.Research of interval-based cloud similaritycomparison algorithm[J].Journal of Chinese ComputerSystems,2011,32(12):2456-2460.(in Chinese)
蔡绍滨,方伟,赵靖,等.基于区间的云相似度比较算法的研究[J].小型微型计算机系统,2011,32(12):2456-2460.
[13]XU X H,WANG P,CAI C G.Linguistic multiattributelarge group decision-making method based on similarity measurement of cloud model [J].Control and Decision,2017,32(3):459-466.(in Chinese)
徐选华,王佩,蔡晨光.基于云相似度的语言偏好信息多属性大群体决策方法[J].控制与决策,2017,32(3):459-466.
[14]ZHANG G W,LI D Y,LI P,et al.A collaborative filtering recommendation algorithm based on cloud model [J].Journal of Software,2007,18(10):2403-2411.(in Chinese)
张光卫,李德毅,李鹏,等.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411.
[15]LI H L,GUO C H,QIU W R.Similarity meraurement between normal cloud models [J].Acta Electronica Sinica,2011,39(11):2561-2567.(in Chinese)
李海林,郭崇慧,邱望仁.正态云模型相似度计算方法[J].电子学报,2011,39(11):2561-2567.
[16]GONG Y B,JIANG Y D,LIANG X C.Similarity measurement for normal cloud models based on fuzzysimilarity measure[J].Systems Engineering,2015,33(9):133-137.(in Chinese)
龚艳冰,蒋亚东,梁雪春.基于模糊贴近度的正态云模型相似度度量[J].系统工程,2015,33(9):133-137.
[17]YAN Y,TANG Z M.Pertinencemeasurement of cloud model by using expectation-entropycurves[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(10):95-100.(in Chinese)
阎岩,唐振民.基于含熵期望曲线的云模型相关性度量方法[J].华中科技大学学报(自然科学版),2012,40(10):95-100.
[18]LI D Y,LIU C Y.Study on the universality of the normalcloud model[J].Engineering Science,2004,6(8):28-34.(in Chinese)
李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34.
[19]WANG J Q,LU P,ZHANG H Y,et al.Method of multi-crriteria group decision-making based on Cloud aggregation operators with linguistic information[J].Information Sciences,2014,274:177-191.
[20]LIAO H C,XU Z S,ZENG X J.Hesitant fuzzy linguistic VIKOR method and itsapplication in qualitative multiple criteria decision making[J].IEEE Transactions on Fuzzy Systems.2015,23:1343-1355.
[1] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[2] 柴慧敏, 张勇, 方敏.
基于特征相似度聚类的空中目标分群方法
Aerial Target Grouping Method Based on Feature Similarity Clustering
计算机科学, 2022, 49(9): 70-75. https://doi.org/10.11896/jsjkx.210800203
[3] 李斌, 万源.
基于相似度矩阵学习和矩阵校正的无监督多视角特征选择
Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment
计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124
[4] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[5] 黄少滨, 孙雪薇, 李熔盛.
基于跨句上下文信息的神经网络关系分类方法
Relation Classification Method Based on Cross-sentence Contextual Information for Neural Network
计算机科学, 2022, 49(6A): 119-124. https://doi.org/10.11896/jsjkx.210600150
[6] 王毅, 李政浩, 陈星.
基于用户场景的Android 应用服务推荐方法
Recommendation of Android Application Services via User Scenarios
计算机科学, 2022, 49(6A): 267-271. https://doi.org/10.11896/jsjkx.210700123
[7] 成科扬, 王宁, 崔宏纲, 詹永照.
基于局部注意力图互迁移的可解释性优化方法
Interpretability Optimization Method Based on Mutual Transfer of Local Attention Map
计算机科学, 2022, 49(5): 64-70. https://doi.org/10.11896/jsjkx.210400176
[8] 陈壮, 邹海涛, 郑尚, 于化龙, 高尚.
基于用户覆盖及评分差异的多样性推荐算法
Diversity Recommendation Algorithm Based on User Coverage and Rating Differences
计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263
[9] 王胜, 张仰森, 陈若愚, 向尕.
基于细粒度差异特征的文本匹配方法
Text Matching Method Based on Fine-grained Difference Features
计算机科学, 2021, 48(8): 60-65. https://doi.org/10.11896/jsjkx.200700008
[10] 王春静, 刘丽, 谭艳艳, 张化祥.
基于模糊颜色特征和模糊相似度的图像检索方法
Image Retrieval Method Based on Fuzzy Color Features and Fuzzy Smiliarity
计算机科学, 2021, 48(8): 191-199. https://doi.org/10.11896/jsjkx.200800202
[11] 郭奕杉, 刘漫丹.
基于时空轨迹数据的异常检测
Anomaly Detection Based on Spatial-temporal Trajectory Data
计算机科学, 2021, 48(6A): 213-219. https://doi.org/10.11896/jsjkx.201100193
[12] 孙振强, 罗永龙, 郑孝遥, 章海燕.
一种融合用户情感与相似度的智能旅游路径推荐方法
Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity
计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119
[13] 邵超, 宋淑米.
基于信任关系下用户兴趣偏好的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on User Preference Under Trust Relationship
计算机科学, 2021, 48(6A): 240-245. https://doi.org/10.11896/jsjkx.200700113
[14] 戴宗明, 胡凯, 谢捷, 郭亚.
基于直觉模糊集的集成学习算法
Ensemble Learning Algorithm Based on Intuitionistic Fuzzy Sets
计算机科学, 2021, 48(6A): 270-274. https://doi.org/10.11896/jsjkx.200700036
[15] 黄铭, 孙林夫, 任春华, 吴奇石.
改进KNN的时间序列分析方法
Improved KNN Time Series Analysis Method
计算机科学, 2021, 48(6): 71-78. https://doi.org/10.11896/jsjkx.200500044
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!