skip to main content
10.1145/3663548.3688531acmconferencesArticle/Chapter ViewAbstractPublication PagesassetsConference Proceedingsconference-collections
poster

Towards Fine-Grained Sidewalk Accessibility Assessment with Deep Learning: Initial Benchmarks and an Open Dataset

Published: 27 October 2024 Publication History

Abstract

We examine the feasibility of using deep learning to infer 33 classes of sidewalk accessibility conditions in pre-cropped streetscape images, including bumpy, brick/cobblestone, cracks, height difference (uplifts), narrow, uneven/slanted, pole, and sign. We present two experiments: first, a comparison between two state-of-the-art computer vision models, Meta’s DINOv2 and OpenAI’s CLIP-ViT, on a cleaned dataset of ∼ 24k images; second, an examination of a larger but noisier crowdsourced dataset (∼ 87k images) on the best performing model from Experiment 1. Though preliminary, Experiment 1 shows that certain sidewalk conditions can be identified with high precision and recall, such as missing tactile warnings on curb ramps and grass grown on sidewalks, while Experiment 2 demonstrates that larger but noisier training data can have a detrimental effect on performance. We contribute an open dataset and classification benchmarks to advance this important area.

References

[1]
Marc A. Adams, Christine B. Phillips, Akshar Patel, and Ariane Middel. 2022. Training Computers to See the Built Environment Related to Physical Activity: Detection of Microscale Walkability Features Using Computer Vision. International Journal of Environmental Research and Public Health 19, 8 (2022). https://doi.org/10.3390/ijerph19084548
[2]
Breck, Polyzotis, Roy, Whang, and Zinkevich. 2019. Data Validation for Machine Learning. In Proceedings of Machine Learning and Systems. https://arxiv.org/pdf/2203.02155
[3]
Lukas Budach, Moritz Feuerpfeil, Nina Ihde, Andrea Nathansen, Nele Noack, Hendrik Patzlaff, Felix Naumann, and Hazar Harmouch. 2022. The Effects of Data Quality on Machine Learning Performance. arxiv:2207.14529
[4]
Haihua Chen, Jiangping Chen, and Junhua Ding. 2021. Data Evaluation and Enhancement for Quality Improvement of Machine Learning. IEEE Transactions on Reliability 70, 2 (2021), 831–847. https://doi.org/10.1109/TR.2021.3070863
[5]
Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. 2022. Reproducible scaling laws for contrastive language-image learning. arxiv:2212.07143
[6]
Pierre Dognin, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young, and Brian Belgodere. 2022. Image Captioning as an Assistive Technology: Lessons Learned from VizWiz 2020 Challenge. Journal of Artificial Intelligence Research 73 (Jan. 2022), 437–459. https://doi.org/10.1613/jair.1.13113
[7]
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arxiv:2010.11929
[8]
Michael Duan, Shosuke Kiami, Logan Milandin, Johnson Kuang, Michael Saugstad, Maryam Hosseini, and Jon E. Froehlich. 2022. Scaling Crowd+AI Sidewalk Accessibility Assessments: Initial Experiments Examining Label Quality and Cross-city Training on Performance. In Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility (Athens, Greece) (ASSETS ’22). Association for Computing Machinery, New York, NY, USA, Article 82, 5 pages. https://doi.org/10.1145/3517428.3550381
[9]
Jon E. Froehlich, Anke M. Brock, Anat Caspi, João Guerreiro, Kotaro Hara, Reuben Kirkham, Johannes Schöning, and Benjamin Tannert. 2019. Grand challenges in accessible maps. Interactions 26, 2 (feb 2019), 78–81. https://doi.org/10.1145/3301657
[10]
Jon E. Froehlich, Yochai Eisenberg, Maryam Hosseini, Fabio Miranda, Marc Adams, Anat Caspi, Holger Dieterich, Heather Feldner, Aldo Gonzalez, Claudina De Gyves, Joy Hammel, Reuben Kirkham, Melanie Kneisel, Delphine LabbÉ, Steve J. Mooney, Victor Pineda, ClÁUdia PinhÃO, Ana RodrÍGuez, Manaswi Saha, Michael Saugstad, Judy Shanley, Ather Sharif, Qing Shen, Claudio Silva, Maarten Sukel, Eric K. Tokuda, Sebastian Felix Zappe, and Anna Zivarts. 2022. The Future of Urban Accessibility for People with Disabilities: Data Collection, Analytics, Policy, and Tools. In Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility (Athens, Greece) (ASSETS ’22). Association for Computing Machinery, New York, NY, USA, Article 102, 8 pages. https://doi.org/10.1145/3517428.3550402
[11]
Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P. Bigham. 2018. VizWiz Grand Challenge: Answering Visual Questions From Blind People. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[12]
Kotaro Hara, Jin Sun, Robert Moore, David Jacobs, and Jon Froehlich. 2014. Tohme: detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New York, NY, USA, 189–204. https://doi.org/10.1145/2642918.2647403
[13]
Maryam Hosseini, Fabio Miranda, Jianzhe Lin, and Claudio T. Silva. 2022. CitySurfaces: City-scale semantic segmentation of sidewalk materials. Sustainable Cities and Society 79 (2022), 103630. https://doi.org/10.1016/j.scs.2021.103630
[14]
Glenn Jocher, Ayush Chaurasia, and Jing Qiu. 2023. Ultralytics YOLO. https://github.com/ultralytics/ultralytics
[15]
Bon Woo Koo, Subhrajit Guhathakurta, Nisha Botchwey, and Aaron Hipp. 2023. Can good microscale pedestrian streetscapes enhance the benefits of macroscale accessible urban form? An automated audit approach using Google street view images. Landscape and Urban Planning 237 (2023), 104816. https://doi.org/10.1016/j.landurbplan.2023.104816
[16]
Chu Li, Zhihan Zhang, Michael Saugstad, Esteban Safranchik, Chaitanyashareef Kulkarni, Xiaoyu Huang, Shwetak Patel, Vikram Iyer, Tim Althoff, and Jon E. Froehlich. 2024. LabelAId: Just-in-time AI Interventions for Improving Human Labeling Quality and Domain Knowledge in Crowdsourcing Systems. In Proceedings of the CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY, USA, Article 643, 21 pages. https://doi.org/10.1145/3613904.3642089
[17]
Christopher D Manning. 2008. Introduction to information retrieval. Syngress Publishing,.
[18]
Daniela Massiceti, Samreen Anjum, and Danna Gurari. 2022. VizWiz grand challenge workshop at CVPR 2022. SIGACCESS Access. Comput.133, Article 1 (aug 2022), 1 pages. https://doi.org/10.1145/3560232.3560233
[19]
U.S. Department of Transportation. 2024. Safe Streets and Roads for All Grant Program. https://www.transportation.gov/grants/SS4A Accessed June 20, 2024.
[20]
Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. 2024. DINOv2: Learning Robust Visual Features without Supervision. arxiv:2304.07193
[21]
F. Prior, J. Almeida, P. Kathiravelu, T. Kurc, K. Smith, T.J. Fitzgerald, and J. Saltz. 2020. Open access image repositories: high-quality data to enable machine learning research. Clinical Radiology 75, 1 (2020), 7–12. https://doi.org/10.1016/j.crad.2019.04.002
[22]
Manaswi Saha, Michael Saugstad, Hanuma Teja Maddali, Aileen Zeng, Ryan Holland, Steven Bower, Aditya Dash, Sage Chen, Anthony Li, Kotaro Hara, and Jon Froehlich. 2019. Project Sidewalk: A Web-based Crowdsourcing Tool for Collecting Sidewalk Accessibility Data At Scale. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300292
[23]
Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. 2022. LAION-5B: An open large-scale dataset for training next generation image-text models. arxiv:2210.08402
[24]
Marina Sokolova and Guy Lapalme. 2009. A systematic analysis of performance measures for classification tasks. Information processing & management 45, 4 (2009), 427–437.
[25]
United Nations Human Settlements Programme (UN-Habitat). 2016. The New Urban Agenda. https://habitat3.org/the-new-urban-agenda/ Accessed June 20, 2024.
[26]
Galen Weld, Esther Jang, Anthony Li, Aileen Zeng, Kurtis Heimerl, and Jon E. Froehlich. 2019. Deep Learning for Automatically Detecting Sidewalk Accessibility Problems Using Streetscape Imagery. In Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility (Pittsburgh, PA, USA) (ASSETS ’19). Association for Computing Machinery, New York, NY, USA, 196–209. https://doi.org/10.1145/3308561.3353798

Index Terms

  1. Towards Fine-Grained Sidewalk Accessibility Assessment with Deep Learning: Initial Benchmarks and an Open Dataset

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ASSETS '24: Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility
      October 2024
      1475 pages
      ISBN:9798400706776
      DOI:10.1145/3663548
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 October 2024

      Check for updates

      Author Tags

      1. DINOv2
      2. Sidewalk accessibility
      3. ViT-CLIP
      4. computer vision
      5. human mobility
      6. obstacle detection

      Qualifiers

      • Poster
      • Research
      • Refereed limited

      Funding Sources

      Conference

      ASSETS '24
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 436 of 1,556 submissions, 28%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 58
        Total Downloads
      • Downloads (Last 12 months)58
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 28 Jan 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media