skip to main content
10.1145/3584954.3584998acmotherconferencesArticle/Chapter ViewAbstractPublication PagesniceConference Proceedingsconference-collections
research-article
Open access

Additive manufacture of polymeric organometallic ferroelectric diodes (POMFeDs) for structural neuromorphic hardware

Published: 12 April 2023 Publication History

Abstract

Hardware design and implementation for online machine learning applications is complicated by a number of facets of conventional artificial neural networks (ANN), e.g. deep neural networks (DNNs), such as reliance on atemporal locality, offline learning using large datasets, potential difficulties in transfer from model to substrates, and issues with processing of noisy sensory data using energy-efficient and asynchronous information processing modalities. Analog or mixed-signal spiking neural networks (SNNs) have promise for lower power, temporally localised, and stimuli selective sensing and inference but are difficult fabricate at low cost. Investigation of beyond-CMOS alternative organic substrates may be worthwhile for development of unconventional neuromorphic hardware with pseudo-spiking dynamics for structural electronics integration in bio-signal processing and robotics. Here, polymeric organometallic ferroelectric diodes (POMFeDs) are introduced for development of printable ferroelectric in-sensor SNNs.

References

[1]
Saleem Anwar, Daniel Pinkal, Wojciech Zajaczkowski, Philipp Von Tiedemann, Hamed Sharifi Dehsari, Manasvi Kumar, Thomas Lenz, Ulrike Kemmer-Jonas, Wojciech Pisula, Manfred Wagner, 2019. Solution-processed transparent ferroelectric nylon thin films. Science advances 5, 8 (2019), eaav3489.
[2]
Karl J Aström. 2008. Event based control. In Analysis and design of nonlinear control systems: In honor of Alberto Isidori. Springer, 127–147.
[3]
Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. 2014. A 240 × 180 130 db 3 μ s latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits 49, 10 (2014), 2333–2341.
[4]
George Brayshaw, Benjamin Ward-Cherrier, and Martin Pearson. 2022. Temporal and Spatio-temporal domains for Neuromorphic Tactile Texture Classification. In Neuro-Inspired Computational Elements Conference. 50–57.
[5]
Marco Cassinerio, N Ciocchini, and Daniele Ielmini. 2013. Logic computation in phase change materials by threshold and memory switching. Advanced Materials 25, 41 (2013), 5975–5980.
[6]
Vincent Chan, Shih-Chii Liu, and Andr van Schaik. 2007. AER EAR: A matched silicon cochlea pair with address event representation interface. IEEE Transactions on Circuits and Systems I: Regular Papers 54, 1 (2007), 48–59.
[7]
Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, 2022. Surrogate gradients for analog neuromorphic computing. Proceedings of the National Academy of Sciences 119, 4 (2022), e2109194119.
[8]
Tianda Fu, Xiaomeng Liu, Shuai Fu, Trevor Woodard, Hongyan Gao, Derek R Lovley, and Jun Yao. 2021. Self-sustained green neuromorphic interfaces. Nature Communications 12, 1 (2021), 3351.
[9]
Yusuke Funatsu, Akinari Sonoda, and Masahiro Funahashi. 2015. Ferroelectric liquid-crystalline semiconductors based on a phenylterthiophene skeleton: effect of the introduction of oligosiloxane moieties and photovoltaic effect. Journal of Materials Chemistry C 3, 9 (2015), 1982–1993.
[10]
Dan Goodman and Romain Brette. 2010. Learning to localise sounds with spiking neural networks. Advances in Neural Information Processing Systems 23 (2010).
[11]
Sarah Guerin, Aimee Stapleton, Drahomir Chovan, Rabah Mouras, Matthew Gleeson, Cian McKeown, Mohamed Radzi Noor, Christophe Silien, Fernando MF Rhen, Andrei L Kholkin, 2018. Control of piezoelectricity in amino acids by supramolecular packing. Nature materials 17, 2 (2018), 180–186.
[12]
Daniel Gutierrez-Galan, Chiara Bartolozzi, Juan Pedro Dominguez-Morales, Angel Jimenez-Fernandez, and Alejandro Linares-Barranco. 2022. Towards the Neuromorphic Implementation of the Auditory Perception in the iCub Robotic Platform. In Neuro-Inspired Computational Elements Conference. 11–12.
[13]
Julian Hengsteler, Barnik Mandal, Cathelijn van Nisselroy, Genevieve PS Lau, Tilman Schlotter, Tomaso Zambelli, and Dmitry Momotenko. 2021. Bringing electrochemical three-dimensional printing to the nanoscale. Nano letters 21, 21 (2021), 9093–9101.
[14]
TW Hickmott. 1962. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics 33, 9 (1962), 2669–2682.
[15]
Sachio Horiuchi, Yusuke Tokunaga, Gianluca Giovannetti, Silvia Picozzi, Hirotake Itoh, Ryo Shimano, Reiji Kumai, and Yoshinori Tokura. 2010. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 7282 (2010), 789–792.
[16]
Yong Hu, Zipeng Guo, Andrew Ragonese, Taishan Zhu, Saurabh Khuje, Changning Li, Jeffrey C Grossman, Chi Zhou, Mostafa Nouh, and Shenqiang Ren. 2020. A 3D-printed molecular ferroelectric metamaterial. Proceedings of the National Academy of Sciences 117, 44 (2020), 27204–27210.
[17]
Angel Jiménez-Fernández, Elena Cerezuela-Escudero, Lourdes Miró-Amarante, Manuel Jesus Domínguez-Morales, Francisco de Asís Gómez-Rodríguez, Alejandro Linares-Barranco, and Gabriel Jiménez-Moreno. 2016. A binaural neuromorphic auditory sensor for FPGA: a spike signal processing approach. IEEE transactions on neural networks and learning systems 28, 4 (2016), 804–818.
[18]
Stefano Larentis, Federico Nardi, Simone Balatti, David C Gilmer, and Daniele Ielmini. 2012. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Transactions on Electron Devices 59, 9 (2012), 2468–2475.
[19]
Sayani Majumdar, Hongwei Tan, Qi Hang Qin, and Sebastiaan van Dijken. 2019. Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing. Advanced Electronic Materials 5, 3 (2019), 1800795.
[20]
Tanyaradzwa N Mangoma, Shunsuke Yamamoto, George G Malliaras, and Ronan Daly. 2022. Hybrid 3D/inkjet-printed organic neuromorphic transistors. Advanced Materials Technologies 7, 2 (2022), 2000798.
[21]
Masahiro Morimoto, Yasuko Koshiba, Masahiro Misaki, and Kenji Ishida. 2015. Polyurea spin-coated thin films: Pyro-and piezoelectric properties and application to infrared sensors. Japanese Journal of Applied Physics 54, 4S (2015), 04DK13.
[22]
Panagiotis Mougkogiannis and Andrew Adamatzky. 2023. Low frequency electrical waves in ensembles of proteinoid microspheres. (2023).
[23]
Yukinobu Murata, Kenji Tsunashima, and Naokazu Koizumi. 1995. Ferroelectric behavior in polyamides of m-xylylenediamine and dicarboxylic acids. Japanese journal of applied physics 34, 12R (1995), 6458.
[24]
Xuezhong Niu, Bobo Tian, Qiuxiang Zhu, Brahim Dkhil, and Chungang Duan. 2022. Ferroelectric polymers for neuromorphic computing. Applied Physics Reviews 9, 2 (2022), 021309.
[25]
Andre Noest. 1987. Phasor neural networks. In Neural information processing systems.
[26]
Seungyeol Oh, Taeho Kim, Myunghoon Kwak, Jeonghwan Song, Jiyong Woo, Sanghun Jeon, In Kyeong Yoo, and Hyunsang Hwang. 2017. HfZrO x-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Letters 38, 6 (2017), 732–735.
[27]
G Pask. 1958. Physical analogues to the growth of a concept. Mechanization of thought processes, Symposium 10, National Physical Laboratory, November 24–27 (pp. 765–794).
[28]
Dayane Reis, Michael Niemier, and X Sharon Hu. 2018. Computing in memory with FeFETs. In Proceedings of the International Symposium on Low Power Electronics and Design. 1–6.
[29]
Clarisse Ribeiro, Carlos M Costa, Daniela M Correia, João Nunes-Pereira, Juliana Oliveira, Pedro Martins, Renato Gonçalves, Vanessa F Cardoso, and Senentxu Lanceros-Mendez. 2018. Electroactive poly (vinylidene fluoride)-based structures for advanced applications. Nature protocols 13, 4 (2018), 681–704.
[30]
Allen I Selverston and Maurice Moulins. 1985. Oscillatory neural networks. Annual review of physiology 47, 1 (1985), 29–48.
[31]
Laura Seufert, Morteza HassanpourAmiri, Paschalis Gkoupidenis, and Kamal Asadi. 2021. Crossbar Array of Artificial Synapses Based on Ferroelectric Diodes. Advanced Electronic Materials 7, 12 (2021), 2100558.
[32]
Linfeng Sun, Zhongrui Wang, Jinbao Jiang, Yeji Kim, Bomin Joo, Shoujun Zheng, Seungyeon Lee, Woo Jong Yu, Bai-Sun Kong, and Heejun Yang. 2021. In-sensor reservoir computing for language learning via two-dimensional memristors. Science advances 7, 20 (2021), eabg1455.
[33]
Yuki Usami, Bram van de Ven, Dilu G Mathew, Tao Chen, Takumi Kotooka, Yuya Kawashima, Yuichiro Tanaka, Yoichi Otsuka, Hiroshi Ohoyama, Hakaru Tamukoh, 2021. In-materio reservoir computing in a sulfonated polyaniline network. Advanced Materials 33, 48 (2021), 2102688.
[34]
Joseph Valasek. 1921. Piezo-electric and allied phenomena in Rochelle salt. Physical review 17, 4 (1921), 475.
[35]
Yan Wang, Yue Gong, Lin Yang, Ziyu Xiong, Ziyu Lv, Xuechao Xing, Ye Zhou, Bing Zhang, Chenliang Su, Qiufan Liao, 2021. MXene-ZnO memristor for multimodal in-sensor computing. Advanced Functional Materials 31, 21 (2021), 2100144.
[36]
Xulei Wu, Bingjie Dang, Hong Wang, Xiulong Wu, and Yuchao Yang. 2022. Spike-Enabled Audio Learning in Multilevel Synaptic Memristor Array-Based Spiking Neural Network. Advanced Intelligent Systems 4, 3 (2022), 2100151.
[37]
Yuchao Yang, Peng Gao, Siddharth Gaba, Ting Chang, Xiaoqing Pan, and Wei Lu. 2012. Observation of conducting filament growth in nanoscale resistive memories. Nature communications 3, 1 (2012), 1–8.
[38]
Lei Zhang, Stephen Ducharme, and Jiangyu Li. 2007. Microimprinting and ferroelectric properties of poly (vinylidene fluoride-trifluoroethylene) copolymer films. Applied Physics Letters 91, 17 (2007), 172906.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
NICE '23: Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference
April 2023
124 pages
ISBN:9781450399470
DOI:10.1145/3584954
This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 April 2023

Check for updates

Author Tags

  1. Event based spiking auditory sensors
  2. additive manufacture.
  3. ferroelectrics
  4. spiking neural networks

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

NICE 2023

Acceptance Rates

Overall Acceptance Rate 25 of 40 submissions, 63%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)195
  • Downloads (Last 6 weeks)28
Reflects downloads up to 27 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media