skip to main content
10.1145/3583961.3583967acmotherconferencesArticle/Chapter ViewAbstractPublication PagesihmConference Proceedingsconference-collections
research-article

Cross-modal interaction of stereoscopy, surface deformation and tactile feedback on the perception of texture roughness in an active touch condition: Interaction intermodale de la stéréoscopie, de la déformation de surface et de la retour tactile sur la perception de la rugosité de la texture dans un état tactile actif

Published: 29 May 2023 Publication History

Abstract

Research has shown that interaction with tactile surfaces can benefit from the addition of haptic feedback. The perception of this feedback is influenced by other modalities, visual and auditory, making it possible to reinforce or enrich it. However, the effect of visual depth cues, such as stereoscopic rendering and surface deformation, on the tactile perception of textures has not been studied yet, especially in an active touch condition. In this paper, we investigate the perceptual interaction between stereoscopy, surface deformation, and haptic feedback in the condition of active touch implemented using friction modulation based on ultrasonic vibrations. The experimental study is based on a Visual-Tactile exploration of a virtual texture. Our objective is to understand the interaction of one modality over the other for roughness and depth perception. Participants were asked to make visual and tactile texture roughness judgments and to estimate the depth of deformation of the texture below their fingers. Our results suggest that: 1) perceived tactile roughness can be modified by adding stereoscopic rendering and/or visual surface deformation but only for smooth tactile textures, 2) perceived visual roughness can be modified by increasing the tactile roughness, 3)the overall roughness (Visual + Tactile) is mainly impacted by the tactile perception.

References

[1]
Ferran Argelaguet, David Antonio Gomez Jauregui, Maud Marchal, and Anatole LeCuyer. 2013. Elastic images: Perceiving local elasticity of images through a novel pseudo-haptic deformation effect. ACM Transactions on Applied Perception 10, 3 (2013), 1–14. https://doi.org/10.1145/2501599
[2]
Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2014. Controlling perceived stiffness of pinched objects using visual feedback of hand deformation. In 2014 IEEE Haptics Symposium (HAPTICS). 557–562. https://doi.org/10.1109/HAPTICS.2014.6775516
[3]
Cagatay Basdogan, Frederic Giraud, Vincent Levesque, and Seungmoon Choi. 2020. A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces. IEEE Transactions on Haptics 13, 3 (2020), 450–470. https://doi.org/10.1109/TOH.2020.2990712 arxiv:2004.13864
[4]
Wouter M. Bergmann Tiest and Astrid M.L. Kappers. 2007. Haptic and visual perception of roughness. Acta Psychologica 124, 2 (2007), 177–189. https://doi.org/10.1016/j.actpsy.2006.03.002
[5]
Richard A. Bolt. 1980. “Put-That-There”: Voice and Gesture at the Graphics Interface. SIGGRAPH Comput. Graph. 14, 3 (July 1980), 262–270. https://doi.org/10.1145/965105.807503
[6]
David Burr and M Gori. 2012. Multisensory Integration Develops Late in Humans. CRC Press, 345–362. https://doi.org/10.1201/b11092-23
[7]
Géry Casiez, Nicolas Roussel, Romuald Vanbelleghem, and Frédéric Giraud. 2011. Surfpad: riding towards targets on a squeeze film effect. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2491–2500.
[8]
Christine Elaine Chapman. 2009. Active Touch. Springer Berlin Heidelberg, Berlin, Heidelberg, 35–41. https://doi.org/10.1007/978-3-540-29678-2_67
[9]
Maxime Dariosecq, Patricia Plénacoste, Florent Berthaut, Anis Kaci, and Frédéric Giraud. 2020. Investigating the semantic perceptual space of synthetic textures on an ultrasonic based haptic tablet. VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 2 (2020), 45–52. https://doi.org/10.5220/0008979800450052
[10]
Marc O Ernst and Martin S Banks. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 6870 (2002), 429–433.
[11]
Alexandra M. Fernandes and Pedro B. Albuquerque. 2012. Tactual perception: A review of experimental variables and procedures. Cognitive Processing 13, 4 (2012), 285–301. https://doi.org/10.1007/s10339-012-0443-2
[12]
Nicholas A. Giudice, Maryann R Betty, and Jack M. Loomis. 2011. Functional equivalence of spatial images from touch and vision: evidence from spatial updating in blind and sighted individuals.Journal of experimental psychology. Learning, memory, and cognition 37 3 (2011), 621–34.
[13]
Monica Gori, Luana Giuliana, Giulio Sandini, and David Burr. 2012. Visual size perception and haptic calibration during development. Developmental Science 15, 6 (2012), 854–862. https://doi.org/10.1111/j.1467-7687.2012.01183.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-7687.2012.01183.x
[14]
Sebastian Günther, Julian Rasch, Dominik Schön, Florian Müller, Martin Schmitz, Jan Riemann, Andrii Matviienko, and Max Mühlhäuser. 2022. Smooth as Steel Wool: Effects of Visual Stimuli on the Haptic Perception of Roughness in Virtual Reality. In CHI Conference on Human Factors in Computing Systems. 1–17.
[15]
Seungju Han and Joonah Park. 2014. Holo-Haptics: Haptic interaction with a see-through 3D display. Digest of Technical Papers - IEEE International Conference on Consumer Electronics (2014), 512–513. https://doi.org/10.1109/ICCE.2014.6776110
[16]
Morton A. Heller. 1982. Visual and tactual texture perception: Intersensory cooperation. Perception & Psychophysics 31, 4 (1982), 339–344. https://doi.org/10.3758/BF03202657
[17]
Robert F. Hess, Long To, Jiawei Zhou, Guangyu Wang, and Jeremy R. Cooperstock. 2015. Stereo vision: The haves and have-nots. i-Perception 6, 3 (2015). https://doi.org/10.1177/2041669515593028
[18]
Yun-Xian Ho, Michael S Landy, and Laurence T Maloney. 2006. How direction of illumination affects visually perceived surface roughness. Journal of vision 6, 5 (2006), 8–8.
[19]
Mark Hollins and S. Ryan Risner. 2000. Evidence for the duplex theory of tactile texture perception. Perception and Psychophysics 62, 4 (2000), 695–705. https://doi.org/10.3758/BF03206916
[20]
Karina Kangur, Michal Toth, Julie Harris, and Constanze Hesse. 2019. Everyday haptic experiences influence visual perception of material roughness. Journal of Vision 19 (09 2019), 300a. https://doi.org/10.1167/19.10.300a
[21]
Takahiro Kawabe. 2020. Mid-Air Action Contributes to Pseudo-Haptic Stiffness Effects. IEEE Transactions on Haptics 13, 1 (2020), 18–24. https://doi.org/10.1109/TOH.2019.2961883
[22]
Cédric Kervegant, Félix Raymond, Delphine Graeff, and Julien Castet. 2017. Touch hologram in mid-air. ACM SIGGRAPH 2017 Emerging Technologies, SIGGRAPH 2017 (2017), 2–3. https://doi.org/10.1145/3084822.3084824
[23]
Johan Kildal. 2011. Tangible 3D haptics on touch surfaces: Virtual compliance. Conference on Human Factors in Computing Systems - Proceedings (2011), 1123–1128. https://doi.org/10.1145/1979742.1979717
[24]
Takashi Kimura and Takuya Nojima. 2012. Pseudo-haptic Feedback on Softness Induced by Grasping Motion. In Haptics: Perception, Devices, Mobility, and Communication, Poika Isokoski and Jukka Springare (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 202–205.
[25]
Roberta L Klatzky and Susan J Lederman. 2010. Multisensory texture perception. In Multisensory object perception in the primate brain. Springer, 211–230.
[26]
Anatole Lécuyer. 2009. Simulating haptic feedback using vision: A survey of research and applications of pseudo-haptic feedback. Presence: Teleoperators and Virtual Environments 18, 1 (2009), 39–53.
[27]
Susan J. Lederman. 1974. Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Perception & Psychophysics 16, 2 (1974), 385–395. https://doi.org/10.3758/BF03203958
[28]
Susan J Lederman and Susan G Abbott. 1981. Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics.Journal of Experimental Psychology: Human perception and performance 7, 4 (1981), 902.
[29]
Zhaowu Luo and Atsumi Imamiya. 2004. Do Colors Affect Our Recognition Memory for Haptic Rough Surfaces?. In Computational Science - ICCS 2004, Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 897–904.
[30]
Roberto A Montano-Murillo, Cuong Nguyen, Rubaiat Habib Kazi, Sriram Subramanian, Stephen DiVerdi, and Diego Martinez-Plasencia. 2020. Slicing-Volume: Hybrid 3D/2D Multi-target Selection Technique for Dense Virtual Environments. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 53–62.
[31]
Pontus Olsson, Fredrik Nysjö, Stefan Seipel, and Ingrid Carlbom. 2012. Physically co-located haptic interaction with 3D displays. In 2012 IEEE Haptics Symposium (HAPTICS). 267–272. https://doi.org/10.1109/HAPTIC.2012.6183801
[32]
Tabitha C. Peck, Laura E. Sockol, and Sarah M. Hancock. 2020. Mind the Gap: The Underrepresentation of Female Participants and Authors in Virtual Reality Research. IEEE Transactions on Visualization and Computer Graphics 26, 5 (2020), 1945–1954. https://doi.org/10.1109/TVCG.2020.2973498
[33]
Delphine Picard. 2006. Partial perceptual equivalence between vision and touch for texture information. Acta Psychologica 121, 3 (2006), 227–248. https://doi.org/10.1016/j.actpsy.2005.06.001
[34]
Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. 2015. SoftAR: Visually manipulating haptic softness perception in spatial augmented reality. IEEE Transactions on Visualization and Computer Graphics 21, 11 (2015), 1279–1288. https://doi.org/10.1109/TVCG.2015.2459792
[35]
Yosra Rekik, Eric Vezzoli, Laurent Grisoni, and Frédéric Giraud. 2017. Localized haptic texture: A rendering technique based on taxels for high density tactile feedback. Conference on Human Factors in Computing Systems - Proceedings 2017-May (2017), 5006–5015. https://doi.org/10.1145/3025453.3026010
[36]
Ted Romanus, Sam Frish, Mykola Maksymenko, William Frier, Loïc Corenthy, and Orestis Georgiou. 2019. Mid-Air Haptic Bio-Holograms in Mixed Reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). 348–352. https://doi.org/10.1109/ISMAR-Adjunct.2019.00-14
[37]
Riad Sahli, Aubin Prot, Anle Wang, Martin Müser, Michal Piovarči, Piotr Didyk, and Roland Bennewitz. 2020. Tactile perception of randomly rough surfaces. Scientific reports 10 (09 2020), 15800. https://doi.org/10.1038/s41598-020-72890-y
[38]
Muhammad Khurram Saleem, Cetin Yilmaz, and Cagatay Basdogan. 2020. Tactile Perception of Virtual Edges and Gratings Displayed by Friction Modulation via Ultrasonic Actuation. IEEE Transactions on Haptics 13, 2 (2020), 368–379. https://doi.org/10.1109/TOH.2019.2949411
[39]
Thomas Sednaoui, Eric Vezzoli, Brygida Dzidek, Betty Lemaire-Semail, C. Chappaz, and Michael Adams. 2017. Friction Reduction Through Ultrasonic Vibration Part 2: Experimental Evaluation of Intermittent Contact and Squeeze Film Levitation. IEEE Transactions on Haptics PP (02 2017). https://doi.org/10.1109/TOH.2017.2671376
[40]
Matthew Turk. 2014. Multimodal interaction: A review. Pattern Recognition Letters 36, 1 (2014), 189–195. https://doi.org/10.1016/j.patrec.2013.07.003
[41]
Yusuke Ujitoko and Yuki Ban. 2021. Survey of Pseudo-Haptics: Haptic Feedback Design and Application Proposals. IEEE Transactions on Haptics 14, 4 (2021), 699–711. https://doi.org/10.1109/TOH.2021.3077619
[42]
Yusuke Ujitoko, Yuki Ban, and Koichi Hirota. 2019. Modulating Fine Roughness Perception of Vibrotactile Textured Surface using Pseudo-haptic Effect. IEEE Transactions on Visualization and Computer Graphics 25, 5 (2019), 1981–1990. https://doi.org/10.1109/TVCG.2019.2898820 arxiv:1902.07071
[43]
George Van Doorn, Barry Richardson, Dianne Wuillemin, and Mark Symmons. 2010. Visual and haptic influence on perception of stimulus size. Attention, perception and psychophysics 72 (04 2010), 813–22. https://doi.org/10.3758/APP.72.3.813
[44]
Lode Vanacken, Chris Raymaekers, and Karin Coninx. 2006. Evaluating the influence of multimodal feedback on egocentric selection metaphors in virtual environments. In International Workshop on Haptic and Audio Interaction Design. Springer, 12–23.
[45]
Eric Vezzoli. 2016. Tactile feedback devices : friction control and texture generation. Ph.D. Dissertation. http://www.theses.fr/2016LIL10068 Thèse de doctorat dirigée par Lemaire-Semail, Betty et Giraud, Frédéric Génie électrique Lille 1 2016.
[46]
Chi Thanh Vi, Damien Ablart, Elia Gatti, Carlos Velasco, and Marianna Obrist. 2017. Not just seeing, but also feeling art: Mid-air haptic experiences integrated in a multisensory art exhibition. International Journal of Human Computer Studies 108, June (2017), 1–14. https://doi.org/10.1016/j.ijhcs.2017.06.004
[47]
Yanqing Wang and Christine L MacKenzie. 1999. Effects of Orientation Disparity Between Haptic and Graphic Displays of Objects in Virtual Environments. In INTERACT, Vol. 99. 391–398.
[48]
J. Wobbrock, Leah Findlater, Darren Gergle, and J. Higgins. 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011).
[49]
Shin-ichiro Yabe, Hiroaki Kishino, Takashi Kimura, and Takuya Nojima. 2017. Pseudo-haptic feedback on softness induced by squeezing action. In 2017 IEEE World Haptics Conference (WHC). 557–562. https://doi.org/10.1109/WHC.2017.7989962

Cited By

View all

Index Terms

  1. Cross-modal interaction of stereoscopy, surface deformation and tactile feedback on the perception of texture roughness in an active touch condition: Interaction intermodale de la stéréoscopie, de la déformation de surface et de la retour tactile sur la perception de la rugosité de la texture dans un état tactile actif

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        IHM '23: Proceedings of the 34th Conference on l'Interaction Humain-Machine
        April 2023
        288 pages
        ISBN:9781450398244
        DOI:10.1145/3583961
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 29 May 2023

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Haptique de surface
        2. Interactions multimodales
        3. Multimodal interactions
        4. Perception de texture
        5. Stereoscopic vision
        6. Surface haptic
        7. Texture perception
        8. Vision stéréoscopique

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        • Marie Sk?odowska-Curie

        Conference

        IHM '23

        Acceptance Rates

        Overall Acceptance Rate 103 of 199 submissions, 52%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)55
        • Downloads (Last 6 weeks)10
        Reflects downloads up to 26 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media