Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:45:40.075Z Has data issue: false hasContentIssue false

On improving robot image-based visual servoing based on dual-rate reference filtering control strategy

Published online by Cambridge University Press:  11 June 2015

J. Ernesto Solanes
Affiliation:
Institute of Design and Manufacturing, Universitat Politècnica de València, València, Spain. E-mails: [email protected], [email protected], [email protected], [email protected]
Pau Muñoz-Benavent*
Affiliation:
Institute of Design and Manufacturing, Universitat Politècnica de València, València, Spain. E-mails: [email protected], [email protected], [email protected], [email protected]
Vicent Girbés
Affiliation:
Institute of Design and Manufacturing, Universitat Politècnica de València, València, Spain. E-mails: [email protected], [email protected], [email protected], [email protected]
Leopoldo Armesto
Affiliation:
Institute of Design and Manufacturing, Universitat Politècnica de València, València, Spain. E-mails: [email protected], [email protected], [email protected], [email protected]
Josep Tornero
Affiliation:
Institute of Design and Manufacturing, Universitat Politècnica de València, València, Spain. E-mails: [email protected], [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

It is well known that the use of multi-rate control techniques have improved the performance of many systems in general, and robotic systems, in particular. The main contribution of this paper is the generalization of the Reference Filtering control strategy from a dual-rate point of view, improving its inherent properties by overcoming the problem of sensor latency. In the paper, we discuss and analyze the improvements introduced by the novel dual-rate reference filtering control strategy in terms of convergence time, reachability and robustness. More specifically, we discuss the capability to solve positioning tasks, when hardware limitations are present with large sampling rates. In addition, a comparison is made between the single-rate and the proposed dual-rate control strategies to prove the advantages of the latter approach. A complete set-up has been prepared for validation, including a six degree of freedom (DOF) industrial manipulator, a smart camera and embedded hardware used as a high level controller.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allibert, G., Courtial, E. and Chaumette, F., “Visual Servoing Via Nonlinear Predictive control,” In: Visual Servoing via Advanced Numerical Methods (Chesi, G. and Hashimoto, K., eds.) LNCIS, vol. 401 (Springer-Verlag, 2010) pp. 375394.Google Scholar
2. Armesto, L., Girbes, V., Sala, A., Zima, M. and Smidl, V., “Duality-based nonlinear quadratic control: Application to mobile robot trajectory-following,” IEEE Trans. Control Syst. Technol. 99, pp. 1 (2013).Google Scholar
3. Armesto, L. and Tomero, J., “A General Formulation for Generating Multi-Rate Models,” Proceedings of the American Control Conference, Denver, CO, USA, vol. 2 (Jun. 4–6, 2003) pp. 11461151.Google Scholar
4. Armesto, L. and Tomero, J., “Dual-Rate High Order Holds Based on Primitive Functions,” Proceedings of the American Control Conference, Denver, CO, USA, vol. 2 (Jun. 4–6, 2003) pp. 11401145 doi: 10.1109/ACC.2003.1239741.Google Scholar
5. Whitlock, C., Navy launches unmanned aircraft from deck of aircraft carrier for 1st time. In: Washington Post (Jun. 10, 2013).Google Scholar
6. Bamieh, B., Pearson, J., Francis, B. A., Tannenbauma, A., “A lifting technique for linear periodic systems with applications to sampled-data control,” Syst. Control Lett. 17, 7988 (1991). DOI http://dx.doi.org/10.1016/0167-6911(91)90033-B.CrossRefGoogle Scholar
7. Bruyninckx, H., Soetens, P. and Koninckx, B., “The Real-Time Motion Control Core of the Orocos Project,” IEEE International Conference on Robotics and Automation, Taipei, Taiwan, vol. 2 (Sept. 14–19, 2003) pp. 27662771.Google Scholar
8. Chaumette, F., “Potential Problems of Stability and Convergence in Image-Based and Position-Based Visual Servoing,” In: The Confluence of Vision and Control, LNCIS Series, vol. 237 (Springer-Verlag, 1998) pp. 6678.CrossRefGoogle Scholar
9. Chaumette, F. and Hutchinson, S., “Visual servo control. I. Basic approaches,” Robot. Autom. Mag. IEEE 13 (4), 8290 (2006) DOI 10.1109/MRA.2006.250573 CrossRefGoogle Scholar
10. Chaumette, F. and Hutchinson, S., “Visual servo control, part II: Advanced approaches,” IEEE Robot. Autom. Mag. 14 (1), 109118 (2007).Google Scholar
11. Corke, P., Robotics, Vision & Control: Fundamental Algorithms in Matlab®, Springer Tracts in Advanced Robotics, vol. 73, pp. 1495 (2011).CrossRefGoogle Scholar
12. Hashimoto, K. and Noritsugu, T., “Performance and Sensitivity in Visual Servoing,” International Conference on Robotics and Automation (ICRA), Leuven, Belgium, vol. 3 (May 16–20, 1998) pp. 23212326.Google Scholar
13. Hutchinson, S., Hager, G. and Corke, P.A tutorial on visual servo control,” IEEE Trans. Robot. Autom. 12 (5), 651670 (1996) DOI 10.1109/70.538972 Google Scholar
14. Khargonekar, P., Poolla, K. and Tannenbaum, A., “Robust control of linear time-invariant plants using periodic compensation,” IEEE Trans. Autom. Control 30 (11), 10881096 (1985).Google Scholar
15. Marchand, E., Spindler, F. and Chaumette, F., Visp for visual servoing: A generic software platform with a wide class of robot control skills. IEEE Robot. Autom. Mag. 12 (4), 4052 (2005) DOI 10.1109/MRA.2005.1577023.Google Scholar
16. Diankov, R. and Kuffner, J., “OpenRAVE: A Planning Architecture for Autonomous Robotics,” Robotics Institute, CMU-RI-TR-08-34 (2008).Google Scholar
17. Rauch, H. E., Striebel, C. T. and Tung, F., “Maximum likelihood estimates of linear dynamic systems,” J. Am. Inst. Aeronaut. Astronaut. 3 (8), 14451450 (1965).CrossRefGoogle Scholar
18. Soetens, P. and Bruyninckx, H., “Realtime Hybrid Task-Based Control for Robots and Machine Tools,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, (April 18–22, 2005) pp. 259264.CrossRefGoogle Scholar
19. Solanes, J. E., Tornero, J., Armesto, L. and Girbés, V., “Multi-Rate Visual Servoing based on Dual-Rate High Order Holds,” Proceedings of the 12th Annual Conference on Towards Autonomous Robotic Systems, Towards Autonomous Robotic Systems (TAROS), Sheffield, England (Aug. 31–Sep 2., 2011) pp. 195206.CrossRefGoogle Scholar
20. Solanes, J. E., Armesto, L., Tornero, J., Muñoz-Benavent, P. and Girbes, V., “Dual-Rate Non-Linear High Order Holds for Visual Servoing Applications,” In: Towards Autonomous Robotic Systems (TAROS) (Herrmann, G., Studley, M., Pearson, M. J., Conn, A. T., Melhuish, C., Witkowski, M., Kim, J.-H. and Vadakkepat, P., eds.) (Bristol, England, April 2005) vol. 4729 (2012) pp. 152163, pp. 1822.Google Scholar
21. Solanes, J. E., Armesto, L., Tornero, J. and Girbes, V., “Improving image-based visual servoing with reference features filtering,” International Conference on Robotics and Automation (ICRA) (May 6–10, 2013) pp. 30833088.Google Scholar
22. Todorov, E., “General duality between optimal control and estimation,” Proceedings of the 47th IEEE Conference on Decision and Control, CDC (Dec. 11, 2008) pp. 42864292.CrossRefGoogle Scholar
23. Zima, M., Armesto, L., Girbes, V., Sala, A. and Smidl, V., Extended Rauch-Tung-Striebel Controller, Conference on Decision and Control (CDC), Florence, Italy (Dec. 10–13, 2013) pp. 29002905.Google Scholar

Solanes supplementary material

Solanes supplementary material 1

Download Solanes supplementary material(Video)
Video 1.7 MB