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Abstract
We consider the trajectory planning of a 6-Degree-of-Freedom (DOF) robot manipulator using computer
algebra, with controlling the orientation of the end-effector. As a first step towards the objective, we
present a solution to the inverse kinematics problem of the manipulator such that the orientation of
the end-effector remains constant using computer algebra.
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1. Introduction

This paper discusses the trajectory planning of a 6-Degree-of-Freedom (DOF) robot manipulator.
A manipulator is a robot resembling a human hand and comprises links that function as a
human arm and joints that function as human joints. Each link is connected for movement
relative to each other by a joint. The first link is connected to the ground, and the last link
called end-effector, contains the hand, which can be moved freely. In this paper, we consider a
manipulator called “myCobot 280" [1] (hereafter called “myCobot”) that has six joints connected
in series that can only rotate around a certain axis. Note that each joint has one degree of
freedom. Therefore, myCobot has at most six degrees of freedom.

The inverse kinematics problem is a problem of determining the joint arrangement when the
end-effector is placed in a specified direction on a certain coordinate in space. The trajectory
planning problem of the manipulator is an inverse kinematics problem in which the position
of the end-effector is expanded from a single coordinate to a trajectory. In other words, it can
be regarded as a problem to find the displacement of the joint when the end-effector of the
manipulator moves on a given trajectory from the initial position to the final position.

In computer algebra, methods for the inverse kinematics problem of a 6-DOF robot manipulator
have been proposed for more than 30 years ([2], [3]). Furthermore, several methods have
been proposed to solve the inverse kinematics problem of a manipulator using Gröbner basis
computation ([4], [5], [6], [7]). Among them, two of the present authors have proposed methods
for solving the inverse kinematic problem ([8], [9]) and trajectory planning problem ([10]) of
a 3-DOF manipulator using computer algebra. In more detail, we have proposed a method
for solving the inverse kinematic problem efficiently with the use of Comprehensive Gröbner
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Figure 1: The schematic diagram and the local coordinate systems of each joint in myCobot.

Systems (CGS) and certifying the existence of a solution to the inverse kinematic problem using
the CGS-QE, or the quantifier elimination (QE) based on the CGS computation.

In this paper, we consider the trajectory planning of a 6-DOF robot manipulator while
controlling the orientation of the end-effector using computer algebra. As a first step towards the
objective, we present a solution to the inverse kinematics problem such that the end-effector’s
orientation remains constant. More precisely, we present a solution to the inverse kinematics
problem under the condition that the end-effector’s local coordinate system overlaps the global
coordinate system by translation.

The paper is organized as follows. In Section 2, the coordinate system and the notation of the
manipulator are introduced. In Section 3, the analytical solution of general inverse kinematics
problems is first described, followed by the solution in myCobot. In Section 4, future initiatives
are described.

2. Preliminaries

2.1. Coordinate systems

For each joint in myCobot, the coordinate system is defined as follows (see Figure 1). Let
each joint be numbered as joint 𝑖 from the base to the end-effector in increasing order, and the
end-effector be numbered as joint 7. Let 𝑖 be the coordinate system of joint 𝑖. Here, 1 is the
reference (global) coordinate system, while the other coordinate systems are local. The axes
of each coordinate system are defined as follows: the 𝑖𝑧 axis in the direction of the joint axis
(rotational axis in the case of a revolute joint), 𝑖𝑥 axis in the direction of the common normal of
the 𝑖𝑧 and 𝑖+1𝑧 axes, and 𝑖𝑦 axis to be a right-handed system.

2.2. Notation

For the index 𝑖, the matrices are denoted by 𝐴𝑖, and vectors are denoted by 𝑖+1𝑥𝑛, in which
subscripts are used to distinguish points, and superscripts denote the local coordinate system to
which they refer (vectors with no superscripts are referenced in 1). If the vector is referenced
with respect to a different coordinate system, it is enclosed within brackets, and a separate
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superscript is added outside the brackets. (e.g. 𝑖[𝑖+1𝑥𝑛]). Scalars are expressed in lowercase
variables, and subscripts, such as 𝑎𝑖, are used where necessary. In 𝑖, the origin is denoted by 𝑂𝑖
and the unit vectors are denoted by 𝑖𝑒𝑥, 𝑖𝑒𝑦 and 𝑖𝑒𝑧. In vector 𝑣, the 𝑖-th component is denoted by
𝑣[𝑖].

2.3. The Denavit-Hartenberg convention

The ‘Denavit-Hartenberg parameters’ [11] are used as a transformation method between coor-
dinate systems. The following parameters are used in the transformations: 𝑎𝑖 as the length of
the common normal between the 𝑖𝑧 and 𝑖+1𝑧 axes, 𝛼𝑖 as the angle from the 𝑖𝑧-axis towards the
𝑖+1𝑧-axis around the 𝑖+1𝑥-axis in the clockwise direction, 𝑑𝑖 as the length between the common
normal 𝑎𝑖 and the origin of the coordinate system 𝑖, and 𝜃𝑖 as the angle between the common
normal 𝑎𝑖 and the 𝑖𝑥 axis.

Let 𝐴𝑖 be the transformation matrix from 𝑖+1 and 𝑖. Then, as the product of matrices
representing rotation and translation, 𝐴𝑖 is expressed by using the above parameters as

𝐴𝑖 =
⎛
⎜
⎜
⎝

cos 𝜃𝑖 − sin 𝜃𝑖 cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 − cos 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

⎞
⎟
⎟
⎠

. (1)

For expressing the transformation of the coordinate system, affine coordinates are used as
follows: if the coordinates of a point is expressed as 𝑡(𝑖𝑥, 𝑖𝑦, 𝑖𝑧) and also as 𝑡+1(𝑖+1𝑥, 𝑖+1𝑦, 𝑖+1𝑧),
they are denoted by 𝑖𝑋 = 𝑡(𝑖𝑥, 𝑖𝑦, 𝑖𝑧, 1) and 𝑖+1𝑋 = (𝑖+1𝑥, 𝑖+1𝑦, 𝑖+1𝑧, 1), respectively, in which the
last coordinates represent translation. Then, by the definition of 𝐴𝑖, we have 𝑖𝑋 = 𝐴𝑖

𝑖+1𝑋 and
𝑖+1𝑋 = 𝐴−1

𝑖
𝑖𝑋, where

𝐴−1
𝑖 =

⎛
⎜
⎜
⎝

cos 𝜃𝑖 sin 𝜃𝑖 0 −𝑎𝑖
− sin 𝜃𝑖 cos 𝛼𝑖 cos 𝜃𝑖 cos 𝛼𝑖 sin 𝛼𝑖 −𝑑𝑖 sin 𝛼𝑖
sin 𝜃𝑖 sin 𝛼𝑖 − cos 𝜃𝑖 sin 𝛼𝑖 cos 𝛼𝑖 −𝑑𝑖 cos 𝛼𝑖

0 0 0 1

⎞
⎟
⎟
⎠

.

If 𝑛 + 1 coordinate systems are given, there exist 𝑛 coordinate transformations between
neighboring coordinate systems. Therefore, if the coordinates of a point are given as 7𝑋 with
respect to 7 (the end-effector), the coordinates 1𝑋 of the same point with respect to 1 (the global
coordinate system) is obtained by multiplying 𝐴𝑖 in sequence, such that

1𝑋 = Aeq7𝑋, Aeq = 𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6. (2)

Note that the inverse transformation is given as Aeq−1 = 𝐴−1
6 𝐴−1

5 𝐴−1
4 𝐴−1

3 𝐴−1
2 𝐴−1

1 .

3. Solving the inverse kinematic problem

3.1. The forward kinematics

We first consider the forward kinematics problem of myCobot. Let 𝑝 = ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗𝑂1𝑂7 be the vector
from the origin of 1 (position of the root of the manipulator) to the origin of 7 (position of the
end-effector), and let 𝑙 = 𝑡(𝑙1, 𝑙2, 𝑙3) = 1[7𝑒𝑥], 𝑚 = 𝑡(𝑚1, 𝑚2, 𝑚3) = 1[7𝑒𝑦], 𝑛 = 𝑡(𝑛1, 𝑛2, 𝑛3) = 1[7𝑒𝑧] be
the vectors that are parallel to the unit vectors on the 𝑥, 𝑦, and 𝑧 axes of 7, respectively. Then,
𝑝, 𝑙, 𝑚, 𝑛 is represented with respect to 1 as

⎛
⎜
⎜
⎝

𝑙1
𝑙2
𝑙3
0

⎞
⎟
⎟
⎠

= Aeq
⎛
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎠

,
⎛
⎜
⎜
⎝

𝑚1
𝑚2
𝑚3
0

⎞
⎟
⎟
⎠

= Aeq
⎛
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎠

,
⎛
⎜
⎜
⎝

𝑛1
𝑛2
𝑛3
0

⎞
⎟
⎟
⎠

= Aeq
⎛
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎠

,
⎛
⎜
⎜
⎝

𝑝1
𝑝2
𝑝3
1

⎞
⎟
⎟
⎠

= Aeq
⎛
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎠

,
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therefore, each component of Aeq and Aeq−1 is obtained as

Aeq =
⎛
⎜
⎜
⎝

𝑙1 𝑚1 𝑛1 𝑝1
𝑙2 𝑚2 𝑛2 𝑝2
𝑙3 𝑚3 𝑛3 𝑝3
0 0 0 1

⎞
⎟
⎟
⎠

, Aeq−1 =
⎛
⎜
⎜
⎝

𝑙1 𝑙2 𝑙3 −(𝑙1𝑝1 + 𝑙2𝑝2 + 𝑙3𝑝3)
𝑚1 𝑚2 𝑚3 −(𝑚1𝑝1 + 𝑚2𝑝2 + 𝑚3𝑝3)
𝑛1 𝑛2 𝑛3 −(𝑛1𝑝1 + 𝑛2𝑝2 + 𝑛3𝑝3)
0 0 0 1

⎞
⎟
⎟
⎠

. (3)

As seen in eq. (3), by putting the angles of the joints 𝜃1, … , 𝜃6 into the transformation matrix 𝐴𝑖,
the position and orientation of the end-effector are obtained.

3.2. The inverse kinematic problem

To make use of eq. (3) in myCobot, we substitute some of the joint parameters 𝑎𝑖, 𝛼𝑖, 𝑑𝑖, 𝜃𝑖 of
myCobot into the transformation matrix 𝐴𝑖. As shown in the schematic diagram of myCobot in
Figure 1, where the squares represent the revolute joints and the angle of rotation 𝜃𝑖 is given by
taking a positive counterclockwise direction with respect to the 𝑖𝑧 axis, the joint parameters are
given as

{𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6} = {𝜋/2, 0, 0, 𝜋/2, 𝜋/2, 0}, 𝑎1 = 𝑑2 = 𝑑3 = 𝑎4 = 𝑎5 = 𝑎6 = 0. (4)

By substituting the joint parameters in eq. (4) into the transformation matrix 𝐴𝑖 in eq. (1),
Aeq is calculated. Then, by comparing the components of Aeq with the components of Aeq in
eq. (3), a system of 12 polynomial equations in the variables 𝑠𝑖 and 𝑐𝑖 (𝑖 = 1, … , 6) is obtained,
where 𝑠𝑖 = sin 𝜃𝑖 and 𝑐𝑖 = cos 𝜃𝑖. Each 𝜃𝑖 can be obtained by selecting the appropriate equation(s)
from the above system and finding the solution. However, in the computation of Gröbner
basis, the coefficients of the equations may expand, which makes it difficult to find the solution.
Therefore, we focus on the structure of myCobot and solve its inverse kinematic problem from a
different perspective as follows.

3.3. Solving the inverse kinematic problem with a fixed orientation

Inverse kinematics problems for robot manipulators of a certain structure can be solved analyti-
cally [12, 13]. Pieper [13] has pointed out that when the end effector of a 6-DOF manipulator has
a spherical joint, the inverse kinematics problem can be separated into position and orientation
problems of the end-effector. He has further noted that when the rotational axes of three consec-
utive rotational joints of a 6-DOF manipulator intersect at a single point, the inverse kinematics
problem can also be separated into position and orientation problems of the end-effector.

Pieper’s argument suggests that if there exists a combination of three consecutive rotational
joints whose rotational axes intersect at a single point, it becomes possible to solve the inverse
kinematics problem analytically. However, unfortunately, in the case of myCobot, there are no
combinations of three consecutive rotational joints whose rotational axes intersect at a single
point, although there are combinations of two consecutive joints whose rotational axes intersect
at a single point. Therefore, following Pieper’s approach, we solve the inverse kinematics problem
by imposing constraints on the orientation of the end-effector.

For simplicity, we solve the inverse kinematic problem with the condition that the orientation
of the end-effector remains constant, i.e. the axis in 7 is parallel to the axis in 1 preserving the
same direction. Let 𝑙 = 𝑡(1, 0, 0), 𝑚 = 𝑡(0, 1, 0), 𝑛 = 𝑡(0, 0, 1), then Aeq and Aeq−1 in eq. (3) become
as

Aeq =
⎛
⎜
⎜
⎝

1 0 0 𝑝1
0 1 0 𝑝2
0 0 1 𝑝3
0 0 0 1

⎞
⎟
⎟
⎠

, Aeq−1 =
⎛
⎜
⎜
⎝

1 0 0 −𝑝1
0 1 0 −𝑝2
0 0 1 −𝑝3
0 0 0 1

⎞
⎟
⎟
⎠

.

Let 𝑃 be the intersection point of axes 4𝑧 and 5𝑧, expressed as
1𝑃 = ⃖⃖ ⃖⃖ ⃖⃗𝑂1𝑃 = 𝑡(𝑥, 𝑦 , 𝑧, 1). (5)
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Note that 𝑃 is the position of Joint 5. We first express sin 𝜃𝑖 and cos 𝜃𝑖 (𝑖 = 1, … , 6) with the
coordinate of the intersection 𝑃.

Let 7𝑃 = ⃖⃖ ⃖⃖ ⃖⃗𝑂7𝑃, then 7𝑃 is expressed in two ways as

7𝑃 = 𝐴−1
6 𝐴−1

5

⎛
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

−𝑑5 sin 𝜃6
−𝑑5 cos 𝜃6

−𝑑6
1

⎞
⎟
⎟
⎠

, 7𝑃 = Aeq−1
⎛
⎜
⎜
⎝

𝑥
𝑦
𝑧
1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑥 − 𝑝1
𝑦 − 𝑝2
𝑧 − 𝑝3

1

⎞
⎟
⎟
⎠

.

By equating two vectors 7𝑃 above, we have

sin 𝜃6 =
𝑝1 − 𝑥
𝑑5

, cos 𝜃6 =
𝑝2 − 𝑦
𝑑5

. (6)

Let 𝑤4 be the unit vector in the direction of 4𝑧-axis. Then, 𝑤4 and 7 [𝑤4] are expressed as

𝑤4 = 𝐴1𝐴2𝐴3

⎛
⎜
⎜
⎝

sin 𝜃1
− cos 𝜃1

0
0

⎞
⎟
⎟
⎠

, 7 [𝑤4] = 𝐴−1
6 𝐴−1

5 𝐴−1
4

⎛
⎜
⎜
⎝

cos 𝜃6 sin 𝜃5
− sin 𝜃6 sin 𝜃5

− cos 𝜃5
0

⎞
⎟
⎟
⎠

. (7)

By using 7 [𝑤4] above and Aeq, we obtain another expression for 𝑤4 as

𝑤4 = Aeq7 [𝑤4] = 𝑡(cos 𝜃6 sin 𝜃5, − sin 𝜃6 sin 𝜃5, − cos 𝜃5, 0). (8)

By comparing each component of 𝑤4 in eqs. (7) and (8), respectively, we have

cos 𝜃5 = 0, sin 𝜃5 = ±1, cos 𝜃1 = ± sin 𝜃6 = ±
𝑝1 − 𝑥
𝑑5

, sin 𝜃1 = ± cos 𝜃6 = ±
𝑝2 − 𝑦
𝑑5

. (9)

Next, 𝑃3 = ⃖⃖ ⃖⃖ ⃖⃗𝑂1𝑃 is expressed as

𝑃3 = 𝐴1𝐴2𝐴3

⎛
⎜
⎜
⎝

0
0
𝑑4
1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑑4 sin 𝜃1 + 𝑎2 cos 𝜃1 cos 𝜃2 + 𝑎3 cos 𝜃1(cos 𝜃2 cos 𝜃3 − sin 𝜃2 sin 𝜃3)
−𝑑4 cos 𝜃1 + 𝑎2 sin 𝜃1 cos 𝜃2 + 𝑎3 sin 𝜃1(cos 𝜃2 cos 𝜃3 − sin 𝜃2 sin 𝜃3)

𝑑1 + 𝑎2 sin 𝜃2 + 𝑎3(sin 𝜃2 cos 𝜃3 + cos 𝜃2 sin 𝜃3)
1

⎞
⎟
⎟
⎠

. (10)

On the other hand, 𝑃3 is also expressed as 1𝑃 = 𝑡(𝑥, 𝑦 , 𝑧, 1) as shown in eq. (5). Let 𝑄 =
1𝑃[1]2 + 1𝑃[2]2 + (1𝑃[3] − 𝑑1)2 = 𝑃3[1]2 + 𝑃3[2]2 + (𝑃3[3] − 𝑑1)2, then we have

𝑄 = 𝑥2 + 𝑦2 + (𝑧 − 𝑑1)2 = 𝑎22 + 𝑎23 + 𝑑24 + 2𝑎2𝑎3 cos 𝜃3. (11)

Therefore,

cos 𝜃3 =
𝑥2 + 𝑦2 + (𝑧 − 𝑑1)2 − 𝑎22 − 𝑎23 − 𝑑24

2𝑎2𝑎3
, sin 𝜃3 = ±√1 − (cos 𝜃3)2

From the third component of 𝑃3 and the constraints,we have

𝑑1 + 𝑎2 sin 𝜃2 + 𝑎3(sin 𝜃2 cos 𝜃3 + cos 𝜃2 sin 𝜃3) = 𝑧, (12)
(sin 𝜃2)2 + (cos 𝜃2)2 = 1. (13)

If cos 𝜃3, sin 𝜃3 is obtained, cos 𝜃2, sin 𝜃2 is easily found from eq. (12).
Finally to find cos 𝜃4 and sin 𝜃4, let 𝑤5 be the unit vector in the direction of 5𝑧-axis. Then, by

using 7 [𝑤5] expressed as

7[𝑤5] = 𝐴−1
6 𝐴−1

5

⎛
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

sin 𝜃6
cos 𝜃6
0
0

⎞
⎟
⎟
⎠

,
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we have the expression for 𝑤5 in two ways as

𝑤5 = 𝐴1𝐴2𝐴3𝐴4

⎛
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

cos 𝜃1 sin(𝜃2 + 𝜃3 + 𝜃4)
sin 𝜃1 sin(𝜃2 + 𝜃3 + 𝜃4)
− cos(𝜃2 + 𝜃3 + 𝜃4)

0

⎞
⎟
⎟
⎠

, 𝑤5 = Aeq7[𝑤5] =
⎛
⎜
⎜
⎝

sin 𝜃6
cos 𝜃6
0
0

⎞
⎟
⎟
⎠

.

Then, by comparing each component of 𝑤5 above, 𝜃4 is obtained as the one satisfying cos(𝜃2 +
𝜃3 + 𝜃4) = 0 and sin(𝜃2 + 𝜃3 + 𝜃4) = ±1, together with the use of the additivity theorem.

We could represent sin 𝜃𝑖 and cos 𝜃𝑖 (𝑖 = 1, … , 6) using the coordinates of the intersection 𝑃.
Next, we want to find 𝑥, 𝑦 and 𝑧.

First, comparing the third component of 7𝑃, we have

−𝑑6 = 𝑧 − 𝑝3. (14)

Next, from eq. (6) and the trigonometric identity, we have

(
𝑝1 − 𝑥
𝑑5

)
2
+ (

𝑝2 − 𝑦
𝑑5

)
2
= 1. (15)

Finally, by equating the first and the third components in the vector in the right-most-hand
of eq. (10) with 𝑥 and 𝑧, respectively, we have

𝑑4 sin 𝜃1 + 𝑎2 cos 𝜃1 cos 𝜃2 + 𝑎3 cos 𝜃1(cos 𝜃2 cos 𝜃3 − sin 𝜃2 sin 𝜃3) = 𝑥,
𝑑1 + 𝑎2 sin 𝜃2 + 𝑎3(sin 𝜃2 cos 𝜃3 + cos 𝜃2 sin 𝜃3) = 𝑧.

Then, by substituting sin 𝜃1 =
𝑃2−𝑦
𝑑5

and cos 𝜃1 =
𝑝1−𝑥
𝑑5

in eq. (9) into the above equations, assuming
first that sin 𝜃5 = 1, we have the following system of equations in sin 𝜃2, cos 𝜃2, sin 𝜃3, cos 𝜃3:

𝑑4
𝑝2 − 𝑦
𝑑5

+ 𝑎2
𝑝1 − 𝑥
𝑑5

cos 𝜃2 + 𝑎3
𝑝1 − 𝑥
𝑑5

(cos 𝜃2 cos 𝜃3 − sin 𝜃2 sin 𝜃3) = 𝑥,

𝑑1 + 𝑎2 sin 𝜃2 + 𝑎3(sin 𝜃2 cos 𝜃3 + cos 𝜃2 sin 𝜃3) = 𝑧,
(sin 𝜃2)2 + (cos 𝜃2)2 = 1,
(sin 𝜃3)2 + (cos 𝜃3)2 = 1,

(16)

in which the last two equations are added as trigonometric identities.
Then, the solution of the system in eq. (16) gives the value of cos 𝜃3 as

cos 𝜃3 =
1

2𝑎2𝑎3(𝑝1 − 𝑥)2
(−𝑎22𝑝21 − 𝑎23𝑝21 + 𝑝21𝑑21 + 𝑝22𝑑24 + 2𝑎22𝑝1𝑥 + 2𝑎23𝑝1𝑥 − 2𝑝1𝑑21𝑥 − 2𝑝2𝑑4𝑑5𝑥

− 𝑎22𝑥2 − 𝑎23𝑥2 + 𝑑21𝑥2 + 𝑑25𝑥2 − 2𝑝2𝑑24𝑦 + 2𝑑4𝑑5𝑥𝑦 + 𝑑24𝑦2 − 2𝑝21𝑑1𝑧 + 4𝑝1𝑑1𝑥𝑧 − 2𝑑1𝑥2𝑧
+ 𝑝21𝑧2 − 2𝑝1𝑥𝑧2 +𝑥2𝑧2) . (17)

By putting cos 𝜃3 in eq. (17) into the first equation in eq. (11) and multiplying both sides by
(𝑝1 − 𝑥)2, we have

𝑑24𝑝21 + 𝑑24𝑝22 − 2(𝑑24𝑝1 + 𝑑4𝑑5𝑝2)𝑥 + (𝑑24 + 𝑑25 − 𝑝21)𝑥2 + 2𝑝1𝑥3 − 𝑥4

− 2𝑑24𝑝2𝑦 + 2𝑑4𝑑5𝑥𝑦 + (𝑑24 − 𝑝21)𝑦2 + 2𝑝1𝑥𝑦2 − 𝑥2𝑦2 = 0. (18)

In the case sin 𝜃5 = −1, perform the same calculation with sin 𝜃1 =
𝑃2−𝑦
𝑑5

and cos 𝜃1 =
𝑝1−𝑥
𝑑5

. In
this case, the sign in eqs. (17) and (18) changes in part, which gives the following equations.
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cos 𝜃3 =
1

2𝑎2𝑎3(𝑝1 − 𝑥)2
(−𝑎22𝑝21 − 𝑎23𝑝21 + 𝑝21𝑑21 + 𝑝22𝑑24 + 2𝑎22𝑝1𝑥 + 2𝑎23𝑝1𝑥 − 2𝑝1𝑑21𝑥 + 2𝑝2𝑑4𝑑5𝑥

− 𝑎22𝑥2 − 𝑎23𝑥2 + 𝑑21𝑥2 + 𝑑25𝑥2 − 2𝑝2𝑑24𝑦 − 2𝑑4𝑑5𝑥𝑦 + 𝑑24𝑦2 − 2𝑝21𝑑1𝑧 + 4𝑝1𝑑1𝑥𝑧 − 2𝑑1𝑥2𝑧
+ 𝑝21𝑧2 − 2𝑝1𝑥𝑧2 +𝑥2𝑧2) , (19)

𝑑24𝑝21 + 𝑑24𝑝22 − 2(𝑑24𝑝1 − 𝑑4𝑑5𝑝2)𝑥 + (𝑑24 + 𝑑25 − 𝑝21)𝑥2 + 2𝑝1𝑥3 − 𝑥4

− 2𝑑24𝑝2𝑦 − 2𝑑4𝑑5𝑥𝑦 + (𝑑24 − 𝑝21)𝑦2 + 2𝑝1𝑥𝑦2 − 𝑥2𝑦2 = 0. (20)

Furthermore, eq. (18) or eq. (20) together with eqs. (14) and (15), we obtain a system of
polynomial equations in 𝑥, 𝑦 , 𝑧. Solving the system (by using Gröbner basis computation, etc.)
gives the position of the intersection point 𝑃.

4. Concluding remarks

In this paper, we have proposed a solution for the inverse kinematic problem of a 6-DOF
manipulator under the condition that the orientation of the end-effector remains constant.

Our first task from here includes the verification of the solution with the CGS-QE method
and efficiently solving the system of polynomial equations by using CGS, as we have proposed in
the previous work. In addition, the orientation was specified this time for simplicity. However,
orientation is not always constant in real-world manipulators. It is therefore necessary to develop
the problem into an inverse kinematics problem for arbitrary orientations. There are several
conditions on the geometry of the 6-DOF manipulator to be analytically solvable [13], and a
method with computer algebra has been proposed for solving the inverse kinematic problem of
the 6-DOF manipulator [3]. We will look for better solutions with reference to these methods.
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