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ABSTRACT
Recent research has pointed towards further understanding
the cognitive processes involved in interactive information
retrieval, with most papers using secondary measures of cog-
nition to do so. Our own research is focused on using direct
measures of cognitive workload, using brain sensing tech-
niques with fNIRS. Amongst various brain sensing technolo-
gies, fNIRS is most conducive to ecologically valid user stud-
ies, as it is less affected by body movement and can be worn
while using a computer at a desk. This paper describes our
two pronged approach focusing on a) moving fNIRS research
beyond simple psychological tests towards actual interactive
IR tasks and b) evaluating real search user interfaces.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation]: Eval-
uation/methodology, Theory and methods

Keywords
Functional near-infrared spectroscopy(fNIRS), Brain-computer
interface(BCI), Human cognition, Information processing sys-
tem, Multiple resource model, Limited resource model

1. INTRODUCTION
The cognitive aspects of Information Retrieval (IR) have

repeatedly received focus over time, from Ingwersen’s Cog-
nitive Model [11], to recent analyses of cognitive workload
during search tasks [2, 10]. The recurring interest is in what
users think about at different task stages, and how much
mental workload is involved. The benefits of knowing more
about the searcher’s cognitive state would come from pro-
viding better support for their needs, with Wilson et al sug-
gesting that better designed Search User Interfaces (SUIs)
could reduce unnecessary workload on the user [23].

Although some prior work (e.g. [2]) have used indirect
techniques to analyse workload during search tasks, the de-
creasing cost of brain sensing hardware has meant that more
recent research is using more objective techniques. Pike et
al [17] and Gwizdka et al [10] used EEG technology, while
Moshfeghi et al used fMRI to measure workload when mak-
ing relevance judgements [15]. Each of these technologies
have known limitations for studying actual interactive IR be-
haviour, with EEG being highly affected by even tiny body
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movement, and fMRI requiring users to lay in tunnel void
of any metal objects. Recent Human-Computer Interaction
research has listed the benefits of fNIRS brain sensing tech-
niques, which are less affected by body movement, and can
be more easily used in ecologically valid study conditions.

Functional Near Infrared Spectroscopy (fNIRS) is an emerg-
ing neuroimaging technique that is non-invasive, portable,
inexpensive and suitable for periods of extended monitor-
ing. fNIRS measures the hemodynamic response - the de-
livery of blood to active neuronal tissues. fNIRS is designed
to be placed directly upon a participants scalp, typically
targeting the prefrontal cortex. This paper describes our
two-pronged approach to using fNIRS to study the cogni-
tive workload created by SUIs, focused on a) task analysis
and b) SUI analysis.

2. RELATED WORK
Understanding the cognitive aspects of interactive search-

ing (as well as interaction in general) has been a long-standing
goal for researchers in the field of Interactive IR. In the 1970s
Bates suggested that searchers employ both search tactics
and idea tactics [7]. In an attempt to explain an individual’s
path during IR, Bates’ “Berrypicking” model [8] argued that
search will vary as the user recognises information and has
new ideas and questions.

In the main cognitive evolution of information seeking re-
search, Ingwersen proposed a cognitive model of IR [11],
where the searcher’s understanding of the document collec-
tion, system, and task that would determine which path a
search would take. The model again put the user’s cognition
as the central point of interest. More recently, Joho [12] ar-
gued that the cognitive effects typically observed in Psychol-
ogy could provide a potential building block of theoretical
development for evaluating interactive IR. Back et al [2], for
example, examined the cognitive demands on users during
the relevance judgement phase, suggesting that the amount
of workload involved was the reason behind searchers rarely
providing relevance judgements in previous work. Using a
secondary measure, the Stroop task, Gwizdka [10] mapped
varying levels of workload at multiple stages of search.

More recently, researchers have focused on objectively mea-
suring interactive IR phases, in line with Back et al’s work,
Moshfeghi et al measured workload during relevance assess-
ments by asking people to make judgements while lying in
an fMRI machine. As making relevance judgements can be
performed without directly interacting with a computer, this
made use of an fMRI machine more realistic. Using more
commercialised tools, Anderson [1] used an EEG sensor to
compare visualization techniques in terms of the burden they



place on a viewer’s cognitive resources. Similarly, Pike et al
[17] developed a prototype tool named CUES that was ca-
pable of collecting a variety of data including EEG whilst
interacting with a website. Pike et al used this to moni-
tor aspects such as frustration and concentration, but their
work demonstrated the variability of EEG data across the
several minutes involved in an interactive IR task.

Using fNIRS, as introduced above, Peck [16] performed a
similar study of different visualisation techniques, while a
system called Brainput [18] was able to identify and corre-
late brain activity patterns among users during multitasking
studies, and intervene when it sensed workload exceeding a
certain level. Our work intends to build upon these HCI
studies, to study interactive IR tasks and SUIs in more eco-
logically valid user study situations.

3. RESEARCH PATHS
Pike et al [17] highlighted the challenges of using brain

sensing technologies to evaluate IIR tasks: that tasks have
different stages, that behaviour quickly diverges after the
first interaction (and thus is hard to compare), and that
brain measurements vary dramatically over time. In order
to address these challenges, we have initiated two clear re-
search paths, both utilising fNIRS technology: 1) evaluating
the cognitive aspects of Interactive IR tasks and 2) meth-
ods to evaluate the design of SUIs. The aim of the first
path, is to move beyond using fNIRS to measure workload
in simplistic psychology memory tasks (like Peck et al [16]),
towards being able to break down real search tasks into pri-
mary components. This implies three considerations:

• Collected data would be meaningless if is not related
to existing knowledge. Therefore, to interpret sensed
fNIRS data we use proposed theories and models.

• It is known that fNIRS can sense cognition information
[19, 16] related to so called working memory (if placed
on the forehead). Assuming this is correct, we are
using models of working memory.

• The proposed models will help us interpret the sensed
data with fNIRS and have a better understanding of
the cognitive impact of various complex tasks (such as
a IR).

Such a technique would allow researchers to analyse data by
stage, and find effective points of comparison during several
minutes of continuous measurements. The second path is
focused on identifying which aspects of working memory are
affected by different features of SUIs, such that researchers
can objectively evaluate the effect of different SUI design
decisions. A combination of both paths works towards being
able to proactively evaluate how SUIs support searchers.

4. PATH 1: WORKLOAD MODELS
To understand the cognitive aspects of IIR, it is essential

to learn about user’s capabilities and limitations in terms
of their cognition: how people perceive, think, remember,
and process information. This path of research focuses on
existing models from Cognitive Psychology and Human Fac-
tors, models that conceptualize and highlight aspects that
typically describe or influence elements of human cognition.

One important part of cognition during interactive search-
ing involves human memory systems. There are two dif-
ferent types of memory [21]: working memory (sometimes
called short-term memory) and long-term memory. Wick-
ens describes working memory as the temporary holding of
information that is “active”, while long-term memory involv-
ing the unlimited, passive storage of information that is not
currently in working memory.

Working memory. Working memory, proposed by Bad-
deley and Hitch (1974) [6], refers to a specific system in the
brain which “provides temporary storage and manipulation
of information...” [3]. Working memory [6, 4, 5] processes
information in two forms: verbal and spatial, and has four
main components (Figure 1):

• A central executive managing attention, acting as
supervisory system and controlling the information from
and to its “slave systems”.

• A visuo-spatial sketch pad holding information in
an analogue spatial form (e.g. Colours, shapes, maps,
etc.), specialised on learning by means of visuospatial
imagery.

• A phonological loop holding verbal information in
an acoustical form (e.g. Numbers, words, etc.); spe-
cialised on learning and remembering information us-
ing repetition.

• A episodic buffer dedicated to linking verbal and
spatial information in chronological order. It is also
assumed to have links to long-term memory.

Figure 1: Baddeley’s Working Memory Model

Information processing system. As humans, we are
exposed to large amounts of information via our sensory
systems. One of our strengths is in selecting information
from our environment, perceiving it, processing it, and cre-
ating a response. Therefore we can use this understanding
of brain activity to identify which elements of an interac-
tive IR environment need to be considered when measuring
brain activity, and how we can reduce rather than increase
a user’s mental workload via interface and system design.

Wicken’s Information Processing Model [21] aims to il-
lustrate how elements of the human information processing
system such as attention, perception, memory, decision mak-
ing and response selection interconnect. We are interested in
observing how and when these elements interconnect during
IR. He describes three different ‘stages’ (see STAGES di-
mension in Figure 2) at which information is transformed:
a perception stage, a processing or cognition stage, and a
response stage, the first two being processes involved in cog-
nition. The first stage involves perceiving information that
is gathered by our senses and provide meaning and interpre-
tation of what is being sensed. The second stage represents
the step where we manipulate and “think about” the per-
ceived information. This part of the information processing



system takes place in working memory and consists of a
wide variety of the mental activities. In relation to IR, it
is interesting to observe how elements of cognition, such as
rehearsal of information, planning the search strategy and
deciding on the search keywords interconnect.

Multiple Resource Model. One model of mental work-
load that has been widely accepted in Human Factors is
Wickens Multiple Resource Model [20] (Figure 2). The ele-
ments of this model overlap with the needs and considera-
tions of evaluating complex tasks (such as IR). He describes
the aspects of human cognition and the multiple resource
theory in four dimensions:

Figure 2: The 4-D multiple resource model [20]

• The STAGES dimension refers to the three main stages
of information processing system (Wickens, 2004 [21]).

• The MODALITIES dimension indicating that audi-
tory and visual perception have different sources.

• The CODES dimension refers to the types of memory
encodings which can be spatial or verbal.

• The VISUAL PROCESSING dimension refers to a nested
dimension within visual resources distinguishing be-
tween focal vision (reading text) and ambient vision
(orientation and movement).

Our aim is to understand how these elements link together
and compose more complex components/tasks. Additionally
we want to consider how complex tasks (such as a search
task) can be divided into primary components according to
the models described. This will help identify possible prob-
lems in SUI design as well as indicating a possible solution
to the problem (suggested implications by Wickens [21]):

• Minimize working memory load of the SUI system and
consider working memory limits in instructions;

• Provide more visual echoes (cues) of different types
during IR (verbal vs spatial);

• Exploit chunking (Miller, 1956 [14]) in various ways:
physical size, meaningful size, superiority of letters
over numbers, etc;

• Minimize confusability;

• Avoid unnecessary zeros in codes to be remembered;

• Encourage regular use of information to increase fre-
quency and redundancy;

• Encourage verbalization or reproduction of informa-
tion that needs to be reproduced in the future;

• Carefully design information to be remembered;

Resource vs Demands. One other model that is of inter-
est is the limited resource model [22] describing the relation-
ship between the demands of a task, the resources allocated
to the task and the impact on performance.

Figure 3: Resources available vs task demands →
impact on performance [22]

The graph from Figure 3 is used to represent the lim-
ited resource model. The X-axes represent the resources
demanded by the primary task and as we move to the right
of the axes, the resources demanded by the primary task
increase. The axes on the left indicate the resources being
used, but also the maximum available resources point (if we
think of working memory that is limited in capacity). The
right axes indicate the performance of the primary task (the
dotted line on the graph). The key element of this model is
the concept of a limited set of resources which, if exceeded,
has a negative impact on performance. However, it does not
distinguish between resource modality, therefore we propose
to use both the limited and multiple resources models to
inform our work.

5. PATH 2: SUI EVALUATION
Relating quantitative data from brain sensing devices into

feedback about SUI designs is one of our ultimate goals in
conducting this research. SUIs are inherently information
rich and thus affect both visual (results page layout) and
verbal (text based results) memory. Detecting a change in ei-
ther verbal or spatial working memory would help determine
if a workload difference was caused by SUI design (spatial)
or the amount of information the design provides (verbal).
Our first in-progress study has stimulated each memory type
in different tasks - Verbal memory was tested by performing
an n-back [13] number memory task, whereas spatial mem-
ory was tested using an n-back visual block matrix task.
Other studies have also looked at each type of memory and
confirmed fNIRS ability to detect changes in heamodynamic
responses accordingly [9].

In addition to developing an understanding of the ex-
tent to which we can monitor different memory, our ini-
tial study also sought to measure the effect of artefacts on
the fNIRS data. Controlling the environment and human
derived sources of noise is a potentially difficult factor to
control without effecting the ecological validity of a study.



Solovey et al [19] showed that fNIRS is relatively resilient to
motion derived artefacts when compared to EEG [17] for ex-
ample, but still required some consideration by researchers
conducting studies. In our own experience, we found that
asking participants to remain still as much as possible was
fairly successful. We are additionally looking at possible
methods for correcting motion derived artefacts using an
external gyroscope connected to the participant.

Designing tasks for experiments that measure cognitive ef-
fect via a brain sensor require careful consideration in order
to ensure that results can be attributed to a cause. Thank-
fully this problem space has been well explored in the field
of Psychology and we are able to adapt the approaches de-
scribed in the literature to suit our task type requirements.
A primary example of this adaptation is demonstrated by
Peck et al [16], where 2 data visualisations techniques were
compared using a methodology based loosely on the n-back
task - a widely used psychology task that is designed to in-
crease load on working memory.

Additionally, we are interested in exploring standard search
studies (without following a psychological study layout) and
seeing whether interesting states can be detected. Solovey
et al [18] performed a similar function by utilising a ma-
chine learning algorithm that had classified “states of inter-
est” prior to performing a task.

Using a similar approach, we could evaluate a SUI to de-
termine whether a particular change in layout has a positive
or negative impact on visual memory. Alternatively, to test
the relevance of a results page (which would be dependant
on the textual results), we could analyse the effects on verbal
memory between 2 varied results pages, we could then re-
flect these changes to the Wickens Multiple Resource Model
[20]. We are also working towards enabling the interpreta-
tion of data within the context of complex multimodal tasks
to further extending our knowledge of the processes involved
during IR and how they interact and effect one another.

6. SUMMARY
This paper has aimed to summarise our two-pronged ap-

proach towards actually evaluating the design of search user
interfaces, in realistic ecologically valid study conditions, us-
ing fNIRS technology. The approach first involves braking
down interactive IR tasks into how they effect the differ-
ent elements of working memory, and second understanding
how SUIs are processed by different parts of working mem-
ory. Our two paths of research will build towards a stage
where we can combine them and objectively evaluate cogni-
tive workload involved in interactive IR. We believe that this
research will provide a novel new direction that SUI’s and
indeed HCI in a broader sense can benefit from. The asso-
ciation of physical recordings in ecological valid settings, to
an existing theoretical model, provides a new measure from
which future SUI development and evaluation could benefit.
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