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Abstract

In this paper we introduce a framework for privacy-
preserving distributed computation that is practical for
many real-world applications. The framework is called
Peers for Privacy (P4P) and features a novel heteroge-
neous architecture and a number of efficient tools for
performing private computation and ensuring security at
large scale. It maintains the following properties: (1)
Provably strong privacy; (2) Adequate efficiency at rea-
sonably large scale; and (3) Robustness against realis-
tic adversaries. The framework gains its practicality by
decomposing data mining algorithms into a sequence of
vector addition steps that can be privately evaluated us-
ing a new verifiable secret sharing (VSS) scheme over
smallfield (e.g., 32 or 64 bits), which has the same cost
as regular, non-private arithmetic. This paradigm sup-
ports a large number of statistical learning algorithms in-
cluding SVD, PCA,k-means, ID3, EM-based machine
learning algorithms, etc., and all algorithms in the sta-
tistical query model [36]. As a concrete example, we
show how singular value decomposition (SVD), which
is an extremely useful algorithm and the core of many
data mining tasks, can be done efficiently with privacy
in P4P. Using real-world data and actual implementation
we demonstrate that P4P is orders of magnitude faster
than existing solutions.

1 Introduction

Imagine the scenario where a large group of users want
to mine their collective data. This could be a community
of movie fans extracting recommendations from their rat-
ings, or a social network voting for their favorite mem-
bers. In all the cases, the users may wish not to reveal
their private data, not even to a “trusted” service provider,
but still obtain verifiably accurate results. The major
issues that make this kind of tasks challenging are the
scale of the problem and the need to deal with cheat-

ing users. Typically the quality of the result increases
with the size of the data (both the size of the user group
and the dimensionality of per user data). Nowadays it
is common for commercial service providers to run al-
gorithms on data set collected from thousands or even
millions of users. For example, the well-publicized Net-
flix Prize (http://www.netflixprize.com/) data set consists
of roughly 100M ratings of 17,770 movies contributed
by 480K users. At such a scale, both private computa-
tion and verifying proper behavior become impractical
(more on this). In other words, privacy technologies fail
to catch up with data mining algorithms’s appetite and
processing capability for large data sets.

We strive to change this. Our goal is to provide a pri-
vacy solution that is practical for many (but not all) real-
world applications at reasonably large scale. We intro-
duce a framework called Peers for Privacy (P4P) which
is guided by the natural incentives of users/vendors and
today’s computing reality. On a typical computer today
there is a six orders of magnitude difference between the
crypto operations in large field needed for secure homo-
morphic computation (order of milliseconds) and regu-
lar arithmetic operations in small (32- or 64-bit) fields
(fraction of a nano-second). Existing privacy solutions
such as [11, 29] make heavy use of public-key operations
for information hiding or verification. While they have
the same asymptotic complexity as the standard algo-
rithms for those problems, the constant factors imposed
by public-key operations are prohibitive for large-scale
systems. We show in section 3.3 and section 7.2 that
they cannot be fixed with trivial changes to support ap-
plications at our scale. In contrast, P4P’s main compu-
tation is based on verifiable secret sharing (VSS) over
small field. This allows private arithmetic operations
to have thesamecost as regular, non-private arithmetic
since both are manipulating the same-sized numbers with
similar complexity. Moreover, such a paradigm admits
extremely efficient zero-knowledge (ZK) tools that are
practical even at large scale. Such tools are indispens-



able in dealing with cheating participants.
Some of techniques used in P4P were initially intro-

duced in [21]. However, the focus of [21] is to develop
an efficient zero-knowledge proof (ZKP) (for detecting
cheating users) and prove its effectiveness. It leaves open
how the ZKP should be incorporated into the computa-
tion to force proper behavior. As we will show, this is not
trivial and requires additional tools, probably tailored to
each application. In particular, [21] does not deal with
the threat of cheating users changing their data during
the computation. This could cause the computation to
produce incorrect results. Such practical issues are not
addressed in [21].

We fill in the missing pieces and provide a comprehen-
sive solution. The contributions of this paper are: (1) We
identify three key qualifications a practical privacy solu-
tion must possess, examine them in light of the changes
in large-scale distributed computing, and formulate our
design. The analysis not only provides rationales for our
scheme, but also can serve as a guideline for practitioners
to appraise the cost for obtaining privacy in their appli-
cations. (2) We introduce a new ZK protocol that ver-
ifies the consistency of user’s data during the computa-
tion. This protocol complements the work of [21] and
ensures the correctness of the computation in the pres-
ence of active user cheating. (3) We demonstrate the
practicality of the framework with a concrete example,
a private singular value decomposition (SVD) protocol.
Prior to our work, there is no privacy solution provid-
ing comparable performance at such large scales. The
example also serves as a tutorial showing how the frame-
work can be adapted to different applications. (4) We
have implemented the framework and performed evalu-
ations against alternative privacy solutions on real-world
data. Our experiments show a dramatic performance im-
provement. Furthermore, we have made the code freely
available and are continuing to improve it. We believe
that, like other secure computation implementations such
as [46, 39, 5, 40], P4P is a very useful tool for devel-
oping privacy-preserving systems and represents a sig-
nificant step towards making privacy a practical goal in
real-world applications.

2 Preliminaries

We say that an adversary is passive, or semi-honest, if
it tries to compute additional information about other
player’s data but still follows the protocol. An active,
or malicious adversary, on the other hand, can deviate
arbitrarily from the protocol, including inputting bogus
data, producing incorrect computation, and aborting the
protocol prematurely. Clearly active adversary is much
more difficult to handle than passive ones. Our scheme
is secure against a hybrid threat model that includes both

passive and active adversaries. We introduce the model
in section 4.

The privacy guarantee P4P provides isdifferential pri-
vacy, a notion of privacy introduced in [25], further re-
fined by [24, 23], and adopted by many latest works such
as [9, 43, 42, 8, 41]. Differential privacy models the leak-
age caused by releasing some function computed over a
data set. It captures the intuition that the function is pri-
vate if the risk to one’s privacy does not substantially in-
crease as a result of participating in the data set. Formally
it is defined as:

Definition 1 (Differential Privacy [25, 24]) ∀ǫ, δ ≥ 0,
an algorithmA gives(ǫ, δ)-differential privacy if for all
S ⊆ Range(A), for all data setsD, D′ such thatD and
D′ differ by a single record

Pr[A(D) ∈ S] ≤ exp(ǫ) Pr[A(D′) ∈ S] + δ

There are several solutions achieving differential privacy
for some machine learning and data mining algorithms
(e.g., [24, 9, 43, 42, 8, 41]). Most require a trusted server
hosting the entire data set. Our scheme removes such a
requirement and also provides tools for handling a more
adversarial setting where the data sources may be mali-
cious. [4] is also a distributed and differentially private
scheme for binary sum functions but it is only secure in
a semi-honest model.

Differential privacy is widely used in the database pri-
vacy community to model the leakage caused by answer-
ing queries. P4P’s reliance on differential privacy is as
follows: During the computation, certain aggregate in-
formation (including the final result) is released (other
information is kept hidden using cryptographic means).
This is also modeled as query responses computed over
the entire data set. Measuring such leakage against dif-
ferential privacy allows us to have a rigorous formulation
of the risk each individual user faces. By tuning the pa-
rametersǫ andδ we can control such risk and obtain a
system with adequate privacy as well as high efficiency.
Another nice property of using differential privacy is that
it can cover the final results (in contrast secure MPC in
cryptography does not) therefore the protection is com-
plete. Integrating differential privacy into secure compu-
tation has been accepted by the cryptography community
[4] and our work can been seen as a concrete and highly
efficient instantiation of such an approach to secure com-
putation of some algorithms.

3 Design Considerations

Our design was motivated by careful evaluation of goals,
available resources, and alternative solutions.
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3.1 Design Goals

Our goal is to provide practical privacy solutions for
some real-world applications. To this end, we identify
three properties that are essential to a practical privacy
solution:

1. Provable Privacy: Its privacy must be rigorously
proven against well formulated privacy definitions.

2. Efficiency and Scalability: It must have adequate
efficiency at reasonably large scale, which is an ab-
solute necessity for many of today’s data mining ap-
plications. The scale we are targeting is unprece-
dented: to support real-world application both the
number of users and the number of data items per
user are assumed to be in millions.

3. Robustness: It must be secure against realistic ad-
versaries. Many computations either involve the
participation of users, or collect data from them.
Cheating of a small number of users is a realistic
threat that the system must handle.

To the best of our knowledge, no existing works, or triv-
ial composition of them, attain all three. Ours is the first,
with open-source code, supporting all these properties.

3.2 Available Resources

During the past few years the landscape of large-scale
distributed computing has changed dramatically. Many
new resources and paradigms are available at very low
cost and many computations that were infeasible at large
scale in the past are now running routinely. One notable
trend is the rapid growth of “cloud computing”, which
refers to the model where clients purchase computing cy-
cles and/or storage from a third-party provider over the
Internet. Vendors are sharing their infrastructures and
allowing general users access to gigantic computing ca-
pability. Industrial giants such as Microsoft, IBM, Ya-
hoo!, and Google are all key players in the game. Some
of the cloud services (e.g., Amazon’s Elastic Compute
Cloud, http://aws.amazon.com/ec2.) are already avail-
able to general public at very cheap price.

The growth of cloud computing symbolizes the in-
creased availability of large-scale computing power. We
believe it is time to re-think the issue of privacy preserv-
ing data mining in light of such changes. There are sev-
eral significant differences:

1. Could computing providers have very different in-
centives. Unlike traditional e-commerce vendors
who are naturally interested in users data (e.g.,
purchase history), the cloud computing providers’s

commodity (CPU cycles and disk space) isorthogo-
nal to users’ computation. Providers do not benefit
directly from knowing the data or computation re-
sults, other than ensuring that they are correct.

2. The traditional image of client-server paradigm has
changed. In particular, the users have much more
control over the data and the computation. In fact in
many cases the cloud servers will be running code
written by the customers. This is to be contrasted
with traditional e-commere where there is a tremen-
dous power imbalance between the service provider,
who possesses all the information and controls what
computation to perform, and the client users.

3. The servers are now clusters of hundreds or even
thousands of machines capable of handling huge
amount of data. They are not bottlenecks anymore.

Discrepancy of incentives and power imbalance have
been identified as two major obstacles for the adoption
of privacy technology by researchers examining privacy
issues from legal and economic perspectives [26, 1]. In-
terestingly, both are greatly mitigated with the dawn of
cloud computing. While traditional e-commerce ven-
dors are reluctant to adopt privacy technologies, cloud
providers would happily comply with customers instruc-
tions regarding what computation to perform. And once
a treasure for the traditional e-commerce vendors, user
data is now almost a burden for the cloud computing
providers: storing the data not only costs disk space, but
also may entail certain liability such as hosting illegal in-
formation. Some cloud providers may even choose not to
store the data. For example, with Amazon’s EC2 service,
user data only persists during the computation.

We believe that cloud computing offers an extremely
valuable opportunity for developing a new paradigm of
practical privacy-preservingdistributed computation: the
existence of highly available, highly reputable, legally
bounded service providers also provides a very important
source of security. In particular, they make it realistic
to treat some participants aspassiveadversaries. (The
rests are still handled as active adversaries. The model
is therefore a heterogenous one.) By tapping into this
resource, we can build a heterogeneous system that can
have privacy, scalability and robustness all at once.

3.3 The Alternatives

Existing privacy solutions for distributed data mining can
be classified into two models: distributed and server-
based. The former is represented by a large amount of
work in the area of secure multiparty computation (MPC)
in cryptography. The latter includes mostly homomor-
phic encryption-based schemes such as [11, 22, 51].
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Generic MPC: MPC allows n players to compute a
function over their collective data without compromising
the privacy of their inputs or the correctness of the out-
puts even when some players are corrupted by the same
adversary. The problem dates back to Yao [52] and Gol-
dreich et al. [31], and has been extensively studied in
cryptography [6, 2, 33]. Recent years see some signifi-
cant improvement in efficiency. Some protocols achieve
nearly optimal asymptotic complexity [3, 16] while some
work in small field [12].

From practitioners’ perspective, however, these
generic MPC protocols are mostly of theoretical interest.
Reducing asymptotic complexity does not automatically
make the schemes practical. These schemes tend to be
complex which imposes a huge barrier for developers not
familiar with this area. Trying to support generic compu-
tation, most of them compile an algorithm into a (boolean
or arithmetic) circuit. Not only the depth of such a cir-
cuit can be huge for complex algorithms, it is also very
difficult, if not entirely impossible, to incorporate exist-
ing infrastructures and tools (e.g., ARPACK, LAPACK,
MapReduce, etc.), into such computation. These tools
are indispensable part of our daily computing life and
symbolize the work of many talents over many years.
Re-building production-ready implementations is costly
and error-prone and generally not an option for most
companies in our fast-pacing modern world.

Recently there are several systems that implemented
some of the MPC protocols. While this reflects a plausi-
ble attempt to bridge the gap between theory and prac-
tice, unfortunately, performance-wise none of the sys-
tems came close to providing satisfactory solutions for
most large-scale real-world applications. Table 1 shows
some representative benchmarks obtained by these im-
plementations. Using FairplayMP [5] as an example,
adding two 64-bit integers is compiled into a circuit of
628 gates and 756 wires using its SFDL compiler. Ac-
cording to [5]’s benchmark, evaluating such a circuit
between two players takes about 7 seconds. With this
performance, adding106 vectors of dimensionality106

each, which constitutes one iteration in our framework,
takes7 × 1012 seconds, or 221,969 years.

ECC and a single server: It has been shown that con-
ventional client-server paradigm can be augmented with
homomorphic encryption to perform some computations
with privacy (e.g., [11, 22, 51]). Still, such schemes are
only marginally feasible for small to medium scale prob-
lems due to the need to perform at least linear number of
large field operations even in purely semi-honest model.
Using elliptic curve cryptography (ECC) can mitigate the
problem as ECC can reduce the size of the cryptographic
field (e.g., a 160-bit ECC key provides the same level
of security as a 1024-bit RSA key). ECC cryptosystems
such as [44] are(+, +)-homomorphic which is ideal for

private computation. However, ECC point addition re-
quires 1 field inversion and several field multiplications.
The operation is still orders of magnitude slower than
adding 64-bit or 32-bit integers directly. According to
our benchmark, inversion and multiplication in a 160-bit
field take 0.0224 and 0.001 milliseconds, respectively.
Adding 1 million106-element vectors takes 260 days.

Lesson learned: For large-scale problems, privacy and
security must be added with negligible cost. In particular,
those steps that dominate the computation shouldnot be
burdened with public-key cryptographic operations (even
those “efficient” ones such as ECC) simply because they
have to be performed so many times. This is the major
principle that guides our design. In our scheme, the main
computation is always performed in small field, while
verifications are done via random projection techniques
to reduce the number of cryptographic operations. As
our experiments show, this approach is effective. When
the number of cryptographic operations are insignificant,
even using the traditional ElGamal encryption (or com-
mitment) with 1024-bit key the performance is adequate
for large scale problems.

4 P4P’s Architecture

Our approach is called Peers for Privacy, or P4P. The
name comes from the feature that, during the computa-
tion, certainaggregateinformation is released. This is a
very important technique that allows the private protocol
to have high efficiency. We show that publishing such
aggregate information does not harm privacy: individual
traits are masked out in the aggregates and releasing them
is safe. In other words, peers data mutually protects each
other within the aggregates.

Let κ > 1 be a small integer. We assume
that there are κ servers belonging to differ-
ent service providers (e.g., Amazon’s EC2 ser-
vice and Microsoft’s Azure Services Platform,
http://www.microsoft.com/azure/default.mspx). We
define aserver as all the computation units under the
control of a single entity. It can be a cluster of thousands
of machines so that it has the capability to support a
large number of users.

Threat Model Let α ∈ [0, 0.5) be the upper bound on
the fraction of the dishonest users in the system.1 Our
scheme is robust against a computationally bounded ad-
versary whose capability of corrupting parties is mod-
eled as follows:

1. The adversary may actively corrupt at most⌊αn⌋
users wheren is the number of users.

2. In addition to 1, we also allow the same adversary
to passively corruptκ − 1 server(s).
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Table 1: Performance Comparison of Existing MPC Implementations
System Adversary Model Benchmark Run Time (sec)

Fairplay [40] Semi-honest Billionaires 1.25
FairplayMP [5] Semi-honest Binary Tree Circuit (512 Gates) 6.25
PSSW [46] Semi-honest AES Encryption of 128-bit block 7
LPS [39] Malicious 16-bit Integer Comparison 135

This model was proposed in [21] and is a special
case of the general adversary structure introduced in
[28, 34, 35] in that some of the participants are actively
corrupted while some others are passively corrupted by
the same adversaryat the same time. Our model does not
satisfy the feasibility requirements of [34, 35] and [28].
We avoid the impossibility by considering addition only
computation.

The model models realistic threats in our target appli-
cations. In general, users are not trustworthy. Some may
be incentivized to bias the computation, some may have
their machines corrupted. So we model them as active
adversaries and our protocol ensures that active cheat-
ing of a small number of users will not exert large in-
fluence on the computation. This greatly improves over
existing privacy-preserving data mining solutions (e.g.
[38, 51, 49]) and many current MPC implementations
which handle only purely passive adversary. The servers,
on the other hand, are selling CPU cycles and disk space,
something that is not related to user’s computation or
data. Deviating from the protocol causes them penalty
(e.g., loss of revenue for incorrect results) but little ben-
efit. Their threat is therefore passive. (Corrupted servers
are allowed to share data with corrupted users)

Treating “large institutional” servers as semi-honest,
non-colluding has already been established by various
previous work [38, 51, 50, 49]. However, in most of
the models, the servers are not only semi-honest, but
also “trusted”, in that some user data is exposed to at
least one of the servers (vertical or horizontal partitioned
database). Our model does not have this type of trust re-
quirement as each server only holds a random share of
the user data. This further reduces the server’s incentive
to try to benefit from user data (e.g., reselling it) because
the information it has are just random numbers without
the other shares. A compromise requires the collusion
of all servers which is a much more difficult endeavor.
This also works for the servers’ benefit: they are relieved
of the liability of hosting secret or illegal computation,
a problem that someone [18] envisions cloud providers
will be facing.

5 The P4P Framework

Let n be the number of users. Letφ be a small (e.g., 32-
or 64-bit) integer. We writeZφ for the additive group
of integers moduloφ. Let ai be private user data for
useri andI be public information. Both can be matri-
ces of arbitrary dimensions with elements from arbitrary
domains. Our scheme supports any iterative algorithms
whose(t + 1)-th update can be expressed as

I(t+1) = f(

n
∑

i=1

d
(t)
i , I(t))

whered
(t)
i = g(ai, I

(t)) ∈ Z
m
φ is an m-dimensional

data vector for useri computed locally. Typical values
for bothm andn can range from thousands to millions.
Both f andg are in general non-linear. In the SVD ex-
ample that we will present,I(t) is the vector returned by
ARPACK, g is matrix-vector product, andf is the inter-
nal computation performed by ARPACK.

This simple primitive is a surprisingly powerful model
supporting a large number of popular data mining and
machine learning algorithms, including Linear Regres-
sion, Naive Bayes, PCA,k-means, ID3, and EM etc.,
as has been demonstrated by numerous previous work
such as [11, 13, 17, 10, 22]. It has been shown that all
algorithms in the statistical query model [36] can be ex-
pressed in this form. Moreover, addition is extremely
easy to parallelize so aggregating a large amount of num-
bers on a cluster is straightforward.

5.1 Private Computation

In the following we only describe the protocol for one
iteration since the entire algorithm is simply a sequen-
tial invocations of the same protocol. The superscript is
thus dropped from the notation. For simplicity, we only
describe the protocol for the case ofκ = 2. It is straight-
forward to extend it to supportκ > 2 servers (by sub-
stituting the(2, 2)-threshold secret sharing scheme with
a (κ, κ) one). Using more servers strengthens the pri-
vacy protection but also incurs additional cost. We do
not expect the scheme will be used with a large number
of servers. This arrangement simplifies matters such as
synchronization and agreement. LetS1 andS2 denote
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the two servers. Leaving out validity and consistency
check which will be illustrated using the SVD example,
the basic computation is carried out as follows:

1. Useri generates a uniformly random vectorui ∈
Z

m
φ and computesvi = di − ui mod φ. She sends

ui to S1 andvi to S2.

2. S1 computesµ =
∑n

i=1 ui mod φ andS2 com-
putesν =

∑n

i=1 vi mod φ. S2 sendsν to S1.

3. S1 updatesI with f((µ + ν) mod φ, I).

It is straightforward to verify that if both servers follow
the protocol, then the final result is indeed the sum of the
user data vectors modφ. This result will be correct if
every user’s vector lies in the specified bounds for L2-
norm, which is checked by the ZKP in [21].

5.2 Provable Privacy

Theorem 1 P4P’s computation protocol leaks no infor-
mation beyond the intermediate and final aggregates, if
no more thanκ − 1 servers are corrupted.

The proof follows easily the fact that both the secret shar-
ing scheme (for the computation) and the Pedersen com-
mitment scheme [45, 15] used in the ZK protocols are
information-theoretic private, as the adversary’s view of
the protocol is uniformly random and contains no infor-
mation about user data. We refer the readers to [30] for
details and formal definition of information-theoretic pri-
vacy.

As for the leakage caused by the released sums, first,
for SVD, and some other algorithms, we are able to show
the sums can be approximated from the final result so
they do not leak more information. For general compu-
tation, we draw on the works on differential privacy. [20]
has shown that, using well-established results from sta-
tistical database privacy [7, 19, 25], under certain condi-
tions, releasing the vector sums still maintains differen-
tial privacy.

In some situations verifying the conditions of [20] pri-
vately is non-trivial but this difficulty is not essential in
our scheme. There are well-established results that prove
that differential privacy, as well as adequate accuracy,
can be maintained as long as the sums are perturbed by
independent noise with variance calibrated to the number
of iterations and the sensitivity of the function [7, 19, 25].
In our settings, it is trivial to introduce noise into our
framework – each server, which is semi-honest, can add
the appropriate amount of noise to their partial sums af-
ter all the vectors from users are aggregated. Calibrating
noise level is also easy: All one needs are the parameters
ǫ, δ, the total number of queries (mT in our case where
T is the number of iterations), and the sensitivity of the

functionf , which is summation in our case, defined as
[25]:

S(f) = max
D,D′

‖f(D) − f(D′)‖1

whereD and D′ are two data sets differing by a sin-
gle record and‖ · ‖1 denotes the L1-norm of a vector.
Cauchy’s Inequality states that

(

m
∑

i=1

xiyi)
2 ≤ (

m
∑

i=1

x2
i )(

m
∑

i=1

y2
i )

For a user vectora = [a1, . . . , am], let xi = |ai|, yi = 1,
we have

‖a‖2
1 = (

m
∑

i=1

|ai|)2 ≤ (

m
∑

i=1

a2
i )m = ‖a‖2

2m

Since our framework bounds the L2-norm of a user’s
vector to belowL, this means the sensitivity of the com-
putation is at most

√
mTL.

Note that the perturbation does not interfere with our
ZK verification protocols in any way, as the latter is per-
formed between each user and the servers on theoriginal
data. Whether noise is necessary or not is dependent on
the algorithm. For simplicity we will not describe the
noise process in our protocol explicitly. We stress again
that the SVD example we will present next doesnotneed
any noise at all. See section 6.6.

6 Private Large-Scale SVD

In the following we use a concrete example, a private
SVD scheme, to demonstrate how the P4P framework
can be used to support private computation of popular
algorithms.

6.1 Basics

Recall that for a matrixA ∈ R
n×m, there exists a factor-

ization of the form

A = UΣV T (1)

whereU andV aren × n andm × m, respectively, and
both have orthonormal columns.Σ isn×m with nonneg-
ative real numbers on the diagonal sorted in descending
order and zeros off the diagonal. Such a factorization is
called a singular value decomposition ofA. The diago-
nal entries ofΣ are called the the singular values ofA.
The columns ofU andV are left- resp. right-singular
vectors for the corresponding singular values.

SVD is a very powerful technique that forms the core
of many data mining and machine learning algorithms.
Let r = rank(A) andui, vi be the column vectors of
U andV , respectively. Equation 1 can be rewritten as
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A = UΣV T =
∑r

i=1 σiuiv
T
i whereσi is theith singu-

lar value ofA. Let k ≤ r be an integer parameter, we
can approximateA by Ak = UkΣkV T

k =
∑k

i=1 σiuiv
T
i .

It is known that of all rank-k approximations,Ak is op-
timal in Frobenius norm sense. Thek columns ofUk

(resp. Vk) give the optimalk-dimensional approxima-
tion to the columnspace (resp. rowspace) ofA. This
dimensionality reduction preserves the structure of orig-
inal data while considers only essential components of
the matrix. It usually filters out noise and improves the
performance of data mining tasks.

Our implementation uses a popular eigensolver,
ARPACK [37] (ARnoldi PACKage), and its parallel
version PARPACK. ARPACK consists of a collection
of Fortran77 subroutines for solving large-scale eigen-
value problems. The package implements the Implic-
itly Restarted Arnoldi Method (IRAM) and allows one
to compute a few, sayk, eigenvalues and eigenvectors
with user specified features such as those of largest mag-
nitude. Its storage complexity isnO(k) + O(k2) where
n is the size of the matrix. ARPACK is a freely-available
yet powerful tool. It is best suited for applications whose
matrices are either sparse or not explicitly available: it
only requires the user code to perform some “action”
on a vector, supplied by the solver, at every IRAM it-
eration. This action is simply matrix-vector product in
our case. Such a reverse communication interface works
seamlessly with P4P’s aggregation protocol.

6.2 The Private SVD Scheme

In our setting the rows ofA are distributed across all
users. We useAi∗ ∈ R

m to denote them-dimensional
row vector owned by useri. From equation 1, and
the fact that bothU andV are orthonormal, it is clear
that AT A = V Σ2V T which implies thatAT AV =
V Σ2. A straightforward way is then to computeAT A =
∑n

i=1 AT
i∗Ai∗ and solve for the eigenpairs ofAT A. The

aggregate can be computed using our private vector ad-
dition framework. This is a distributed version of the
method proposed in [7] and does not require the con-
sistency protocol that we will introduce later. Unfortu-
nately, this approach is not scalable as the cost for each
user isO(m2). Supposem = 106, and each element
is a 64-bit integer, thenAT

i∗Ai∗ is 8 × 1012 bytes, or
about 8 TB. The communication cost for each user is
then 16 TB (she must send shares to two servers). This is
a huge overhead, both communication- and computation-
wise. Usually the data is very sparse and it is a common
practice to reduce cost by utilizing the sparsity. Unfor-
tunately, sparsity does not help in a privacy-respecting
application: revealing which elements are non-zero is a
huge privacy breach and the users are forced to use the
dense format. We propose the following scheme which

...

ARPACK

P4P
Pni=1ATi�Ai�vAT1�A1�vAT2�A2�v

ATn�An�vun
u2u1

v

Figure 1: Private SVD with P4P

reduces the cost dramatically. We involve the users in
the iteration and the total communication (and computa-
tion) cost per iteration is onlyO(m) for each user. The
number of iterations required ranges from tens to over
a thousand. This translates to a maximum of a few GB
data communicated for each user for theentireprotocol
which is much more manageable.

One server, sayS1, will host an ARPACK engine and
interact with its reverse communication interface. In
our case, sinceAT A is symmetric, the server will use
dsaupd, ARPACK’s double precision routine for sym-
metric problems, and asks fork largest (in magnitude)
eigenvalues. At each iteration,dsaupd returns a vectorv
to the server code and asks for the matrix-vector product
AT Av. Notice that

AT Av =

n
∑

i=1

AT
i∗Ai∗v

Each term in the summation is computable by each user
locally in O(m) time (by computing the inner product
Ai∗ · v first) and the result is anm-vector. The vec-
tor can then be input to the P4P computation which ag-
gregates them across all users privately. The aggregate
is the matrix-vector product which can be returned to
ARPACK for another iteration. This process is illustrated
in figure 1.

The above method is known to have sensitivity prob-
lem, i.e., a small perturbation to the input could cause
large error in the output. In particular, the error is
O(‖A‖2/σk) [48]. Fortunately, most applications (e.g.,
PCA) only need thek largest singular values (and
their singular vectors). It is usually not a problem for
those applications since for the principal components
O(‖A‖2/σk) is small. There is no noticeable inaccuracy
in our test applications (latent semantic analysis for doc-
ument retrieval). For general problems the stable way is
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to compute the eigenpairs of the matrix

H =

[

0 AT

A 0

]

It is straightforward to adopt our private vector addition
framework to compute matrix-vector product withH .
For simplicity we will not elaborate on this.

6.3 Enforcing Data Consistency

During the iteration, useri should inputdi = AT
i∗Ai∗v.

However, a cheating user could input something com-
pletely different. This threat is different from inputting
bogus (but in the allowable range) data at the beginning
(and using it consistently throughout the iterations). The
latter only introduces noise to the computation but gener-
ally does not affect the convergence. The L2-norm ZKP
introduced in [21], which verifies that the L-2 norm of a
user’s vector is bounded by a public constant, is effective
in bounding the noise but does not help in enforcing con-
sistency. The former, on the other hand, may cause the
computation not to converge at all. This generally is a
problem for iterative algorithms and is more than simply
testing the equality of vectors: The task is complicated
by the local function that each user uses to evaluate on
her data, i.e., she is not simply inputting her private data
vector, but some (possibly non-linear) function of it. In
the case of SVD, the system needs to ensure that useri
uses the sameAi∗ (to computedi = AT

i∗Ai∗v) in all the
iterations, not that she inputs the same vector.

We provide a novel zero-knowledge tool that ensures
that the correct data is used. The protocol is probabilis-
tic and relies on random projection. That is, the user is
asked to project her original vector and her result of the
current round onto some random direction. It then tests
the relation of the two projections. We will show that this
method catches cheating with high probability but only
involves very few expensive large field operations.

6.3.1 Tools

The consistency protocol uses some standard crypto-
graphic primitives. Detailed construction and proofs can
be found in [45, 15, 11]. We summarize only their key
properties here. All values used in these primitives lie in
the multiplicative groupZ∗

q , or in the additive group of
exponents for this group, whereq is a 1024 or 2048-bit
prime. They rely on RSA or discrete log functions for
cryptographic protection of information.

• Homomorphic commitment: A homomorphic
commitment to an integera with randomnessr is
written asC(a, r). It is homomorphic in the sense
thatC(a, r)C(b, s) = C(a+ b, r+ s). It is infeasible

to determinea givenC(a, r). We say that a prover
“opens” the commitment if it revealsa andr.

• ZKP of knowledge: A prover who knowsa and
r (i.e., who knows how to openA = C(a, r)) can
demonstrate that it has this knowledge to a verifier
who knows only the commitmentA. The proof re-
veals nothing abouta or r.

• ZKP for equivalence: Let A = C(a, r) andB =
C(a, s) be two commitments to the same valuea. A
prover who knows how to openA andB can demon-
strate to a verifier in zero knowledge that they com-
mit to the same value.

• ZKP for product : LetA, B andC be commitments
to a, b, c respectively, wherec = ab. A prover
who knows how to openA, B, C can prove in zero
knowledge to a verifier who has only the commit-
ments that the relationshipc = ab holds among the
values they commit to. If saya is made public, this
primitive can be used to prove thatC encodes a num-
ber that is multiple ofa.

6.3.2 The Protocol

The consistency check protocol is summarized in the fol-
lowing. Since the protocol is identical for all users, we
drop the user subscript for the rest of the paper whenever
there is no confusion. Leta ∈ Z

m
φ be a user’s original

vector (i.e., her row in the matrixA). The correct user
input to this round should bed = aT av. For two vectors
x andy, we usex · y to denote their scalar product.

1. After the user inputs her vectord, in the form of two
random vectorsd(1) and d(2) in Z

m
φ , one to each

server, s.t.d = d(1) + d(2) mod φ, S1 broadcasts a
random numberr. Usingr as the seed and a public
PRG (pseudo-random generator), all players gener-
ate a random vectorc ∈R Z

m
φ .

2. For j ∈ {1, 2}, the user computesx(j) = c · a(j)

mod φ, y(j) = a(j) ·v mod φ. Letx = x(1)+x(2),
y = y(1) + y(2), z = xy. Let w = (c · a)(a · v) −
xy. The user commitsX (j) to x(j), Y(j) to y(j), Z
to z, andW to w. She also construct two ZKPs:
(1) W encodes a number that is multiple ofφ. (2)
Z encodes a number that is the product of the two
numbers encoded inX andY whereX = X (1)X (2)

andY = Y(1)Y(2). She sends all commitments and
ZKPs to both servers.

3. The user opensX (j) andY(j) to Sj who verifies
that both are computed correctly. Both servers ver-
ify the ZKPs. If any of them fails, the user is marked
as FAIL and the servers terminate the protocol with
her.
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4. For j ∈ {1, 2}, the user computes̃z(j) = c · d(j)

mod φ, z̃ = z̃(1) + z̃(2) andw̃ = c ·d− z̃. She com-
mits Z̃(1) to z̃(1), Z̃(2) to z̃(2), andW̃ to w̃. She
constructs the following two ZKPs: (1)̃W encodes
a number that is multiple ofφ and (2)Z̃W̃ andZW
encode the same value. She sends all the commit-
ments and ZKPs to both servers.

5. The user opens̃Z(j) to Sj who verifies that it is
computed correctly. Both servers verify the two
ZKPs. They mark the user as FAIL if any of the
verifications fails and terminate the protocol with
her.

6. Both servers output PASS.

Group Sizes
There are three groups/fields involved in the protocol:
the large, multiplicative groupZ∗

q used for commitments
and ZKPs, the “small” groupZφ used for additive secret-
sharing, and the group of all integers. All the commit-
ments such asX (j) andY(j) are computed inZ∗

q so stan-
dard cryptographic tools can be used. The inputs to the
commitments, which can be user’s data or some inter-
mediate results, are either inZφ or in the integer group
(without bounding their values). Restricting commit-
ment inputs to small field/group does not compromise
the security of the scheme since the outputs are still in
the large field. Using Pederson’s commitment as an ex-
ample, the hiding property is guaranteed by the random
numbers that are generated in thelarge field for each
commitments. And breaking the binding property is still
equivalent to solving the discrete logarithm problem in
Z
∗
q . See [45].
The protocol makes it explicit which group a number

is in using the mod φ operator (i.e.,x = g(y) mod φ
restrictsx to be inZφ while x = g(y) meansx can be
in the whole integer range). The protocol assumes that
q ≫ φ. This ensures that the numbers that are in the
integer group (x, y, z, w in step 2 and̃z andw̃ in step 4)
are much less thanq to avoid modular reduction when
their commitments are produced. This is true for most
realistic deployment, sinceφ is typically 64 bits or less
while q is 1024 bits or more. Theorem 2 proves that the
transition fromZφ to integer fields andZ∗

q only causes
the protocol to fail with extremely low probability:

Theorem 2 Let O be the output of the Consistency
Check protocol. Then

Pr(O = PASS|d = aT av) = 1

and

Pr(O = PASS|d 6= aT av) ≤ 1

φ

Furthermore, the protocol is zero-knowledge.

Proof If computed correctly, bothw andw̃ are multiples
of φ due to modular reduction. Because of homomor-
phism, the equivalence ZKP that̃ZW̃ andZW encode
the same value is to verify thatc · d = c · (aT av).

Completeness: If the user performs the computation
correctly, she should inputd = aT av into this round
of computation. All the verifications should pass. The
protocol outputs PASS with probability 1.

Soundness: Supposed 6= aaT v. The user is forced
to compute the commitmentsX (1),X (2),Y(1),Y(2), and
Z̃(1), Z̃(2) faithfully since she has to open them to at
least to one of the servers. The product ZKP at step 2
forces the number encoded inZ to bexy which differs
from c · (aT av) by w. Due to homomorphism, at step
4, Z̃ encodes a number that differs fromc · d by w̃. The
user could cheat by lying aboutw or w̃, i.e., she could
encode some other values inW andW̃ to adjust for the
difference betweenc · d andc · (aT av), hoping to pass
the equivalence ZKP. However, assuming the soundness
of the ZKPs used, the protocol forces both to be multiple
of φ (steps 2 and 4), so she could succeed only when the
difference betweenc ·d, which she actually inputs to this
round, andc · (aT av), which she should input, is some
multiple of φ. Sincec is made known to herafter she
inputsd, the two numbers are totally unpredictable and
random to her. The probability thatc · d− c · (aT av) is a
multiple ofφ is only1/φ which is the probability of her
success.

Finally, the protocol consists of a sequential invoca-
tion of some well-established ZKPs. By the sequential
composition theorem of [32], the whole protocol is also
zero-knowledge.

As a side note, all the ZKPs can be made non-
interactive using the Fiat-Shamir paradigm [27]. The
user could upload her data in a batch without further in-
teraction. This makes it easier to deploy the scheme. It
is also much more light-weight than the L2-norm ZKP
[21]: the number of large field operations isconstant, as
opposed toO(log m) in the L2-norm ZKP. The private
SVD computation thus involves only one L2-norm ZKP
at first round, and one light verification for each of the
subsequent rounds.

6.4 Dealing with Real Numbers

In their simplest forms, the cryptographic tools only sup-
port computation on integers. In most domains, however,
applications typically have to handle real numbers. In
the case of SVD, even if the original input matrix con-
tains only integer entries, it is likely that real numbers
appear in the intermediate (e.g., the vectors returned by
ARPACK) and the final results.

Because of the linearity of the P4P computation, we
can use a simple linear digitization scheme to convert
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between real numbers in the application domain andZφ,
P4P’s integer field. LetR > 0 be the bound of the
maximum absolute value application data can take, i.e.,
all numbers produced by the application are between
[−R, R]. The integer field provides|φ| bits resolution.
This means the maximum quantization error for one vari-
able isR/φ = 2|R|−|φ|. Summing across alln users, the
worst case absolute error is bounded byn2|R|−|φ|. In
practice|φ| can be 64, and|R| can be around e.g., 20
(this gives a range of[−220, 220]). With n = 106, this
gives a maximum absolute error of under 1 over a mil-
lion.

6.5 The Protocol

Let Q be the set of qualified users initialized to the set of
all users. The entire private SVD method is summarized
as follows:

1. Input The user first provides an L2-norm ZKP [21]
on a with a boundL, i.e., she submits a ZKP that
‖a‖2 < L. This step also forces the user to commit
to the vectora. Specifically, at the end of this step,
S1 andS2 havea(1) ∈ Zφ anda(2) ∈ Zφ, respec-
tively, such thata = a(1)+a(2) mod φ. Users who
fail this ZKP are excluded from subsequent compu-
tation.

2. Repeat the following steps until the ARPACK rou-
tine indicates convergence or stops after certain
number of iterations:

(a) Consistency CheckWhen dsaupd returns
control to S1 with a vector, the server con-
verts the vector tov ∈ Z

m
φ and sends it to

all users. The servers execute the consistency
check protocol for each user.

(b) AggregateFor any users who are marked as
FAIL, or fail to respond, the servers simply ig-
nore their data and exclude them from subse-
quent computation.Q is updated accordingly.
For this round they computes =

∑

i∈Q di and
S1 returns it as the matrix-vector product to
dsaupd which runs another iteration.

3. Output S1 outputs

Σk = diag(σ1, σ2, . . . , σk) ∈ R
k×k

Vk = [v1, v2, . . . , vk, ] ∈ R
m×k

with σi =
√

λi where λi is the ith eigenvalue
andvi the corresponding eigenvector computed by
ARPACK, i = 1, . . . , k, andλ1 ≥ λ2 . . . ≥ λk.

For accuracy of the result produced by this protocol in
the presence ofactivelycheating users, we have

Theorem 3 Letnc be the number of cheating users. We
usẽ· to denote perturbed quantity andσi thei-th singu-
lar value of matrixA. Assuming that honest users vector
L2-norms are uniformly random in[0, L) andnc ≪ n,
then

√

∑

i(σ̃i − σi)2
∑

i σ2
i

< 2

√

nc

n

Proof The classic Weyl and Mirsky theorems [47] bound
the perturbation toA’s singular values in terms of the
Frobenius norm‖ · ‖F of E := A − Ã:

√

∑

i

(σ̃i − σi)2 ≤ ‖E‖F

In our case each rowai of A is held by a user, we have

‖E‖F =

√

√

√

√

n
∑

i=1

‖ãi − ai‖2
2

Since the protocol ensures that‖ai‖2 < L for all users,

√

∑

i

(σ̃i − σi)2 ≤

√

√

√

√

n
∑

i=1

‖ãi − ai‖2
2 <

√
ncL

Let ξ =
√

∑

i(σ̃i − σi)2/
√

∑

i σ2
i , and assuming that

honest users vector L2-norms are uniformly random in
[0, L) andnc ≪ n, then

ξ =

√
∑

i(σ̃i − σi)2

‖A‖F

<

√
ncL

0.5
√

(n − nc)L
≈ 2

√

nc

n

The scheme is also quite robust against users failures.
During our tests reported in section 7, we simulated a
fraction of random users “dropping out” of each itera-
tion. Even when up to50% of the users dropped, for all
our test sets, the computation still converged without no-
ticeable loss of accuracy, measured by residual error (see
section 7.1) using the final matrix with failed users data
ignored. This allows us to handle malicious users who
actively try to disrupt the computation and those who fail
to response due to technical problems (e.g., network fail-
ure) in a uniform way.

6.6 Privacy Analysis

Note that the protocol does not computeUk. This is in-
tentional. Uk contains information about user data: the
ith row of Uk encodes useri’s data in thek-dimensional
subspace and should not be revealed at all in a privacy-
respecting application.Vk, on the other hand, encodes
“item” data in thek-dimensional subspace (e.g., ifA is a
user-by-movie rating matrix, the items will be movies).
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In most applications the desired information can be com-
puted from the singular values (Σk) and the right singular
vectors (V T

k ) (e.g., [11])
At each iteration, the protocol reveals the matrix-

vector productAT Av for some vectorsv. This is not
a problem because the final resultsΣk andV T

k already
give an approximation ofAT A (AT A = V Σ2V T ). A
simulator with the final results can approximate the in-
termediate sums. Therefore the intermediate aggregates
do not reveal more information.

7 Implementation and Evaluation

The P4P framework, including the SVD protocol, has
been implemented in Java using JNI and a NativeBig-
Integer implementation from I2P (http://www.i2p2.de/).
We run several experiments. The server is a 2.50GHz
Xeon E5420 with 32GB memory, the clients are
2.00GHz Xeon E5405 with 800 MB memory allocated
to the tests. In all the experiments,φ is set to be a 62-bit
integer andq 1024-bit.

We evaluated our implementation on three data sets:
the Enron Email Data set [14], EachMovie (EM), and a
randomly generated dense matrix (RAND). The Enron
corpus contains email data from 150 users, spanning a
period of about 5 years (Jan. 1998 to Dec 2002). Our test
was run on the social graph defined by the email commu-
nications. The graph is represented as a150 × 150 ma-
trix A with A(i, j) being the number of emails sent by
useri to userj. EachMovie is a well-known test data set
for collaborative filtering. It comprises ratings of 1648
movies by 74424 users. Each rating is a number in the
range[0, 1]. Both the Enron and EachMovie data sets are
very sparse, with densities 0.0736 and 0.0229, respec-
tively. To test the performance of our protocol on dense
matrices, we generated randomly a2000 × 2000 matrix
with entries chosen in the range[−220, 220].

7.1 Precision and Round Complexity

We measured two quantities:N , the number of IRAM it-
erations until ARPACK indicates convergence, andǫ, the
relative error.N is the number of matrix-vector compu-
tation that was required for the ARPACK to converge.
It is also the number of times P4P aggregation is in-
voked. The errorǫ measures the maximum relative resid-
ual norm among all eigenpairs computed:

ǫ = max
i=1,...,k

‖AT Avi − λivi‖2

‖vi‖2

Table 2 summarizes the results. In all these tests,
we used machine precision as the tolerance input to
ARPACK. The accuracy we obtained is very good:ǫ re-
mains very small for all tests (10−12 to 10−8). In terms

of round complexity,N ranges from under 100 to a few
hundreds. For comparison, we also measured the num-
ber of iterations required by ARPACK when we perform
the matrix-vector multiplication directly without the P4P
aggregation. In all experiments, we found no difference
in N between this direct method and our private imple-
mentation.

7.2 Performance

We measured both running time and communication cost
of our scheme. We focused on server load since each user
only needs to handle her own data so is not a bottleneck.
We first present the case withκ = 2 servers. We mea-
sured the work on the server hosting the ARPACK engine
since it shares more load.

First, the implementation confirmed our observations
about the difference in costs for manipulating large and
small integers. With 1024-bit key length, one exponenti-
ation within the multiplicative groupZ∗

q takes 5.86 mil-
liseconds. Addition and multiplication of two numbers,
also within the group, take 0.024 and 0.062 millisec-
onds, respectively. In contrast, adding two 64-bit inte-
gers, which is the basic operations P4P framework per-
forms, needs only2.7× 10−6 milliseconds. The product
ZKP takes 35.7 ms verifier time and 24.3 ms prover time.
The equivalence ZKP takes no time since it is simply re-
vealing the difference of the two random numbers used in
the commitments [45]. For each consistency check, the
user needs to compute 9 commitments, 3 product ZKPs,
1 equivalence ZKP and 4 large integer multiplications.
The total cost is 178.63 milliseconds for each user. For
every user, each server needs to spend 212.83 millisec-
onds on verification.

For our test data sets, it takes 74.73 seconds of server
time to validate and aggregate all 150 Enron users data
on asinglemachine (each user needs to spend 726 mil-
liseconds to prepare the zero-knowledge proofs). This
translates into a total of 5000 seconds or 83 minutes
spent on private P4P aggregation to computek = 10
singular-pairs. To compute the same number of singu-
lar pairs for EachMovie, aggregating all users data takes
about 6 hours (again on a single machine) and the to-
tal time for 70 rounds is 420 hours. Note that the total
includesboth verification and computation so it is the
cost of a complete run. The server load appears large
but actually is very inexpensive. The aggregation pro-
cess is trivially parallelizable and using a cluster of, say
200 nodes, will reduce the running time to about 2 hours.
This amounts to a very insignificant cost for most service
providers: Using Amazon EC2’s price as a benchmark, it
costs $0.80 per hour for 20 EC2 Compute Units (8 virtual
cores with 2.5 EC2 Compute Units each). Data trans-
fer price is $0.100 per GB. The total cost for comput-
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Table 2: Round Complexity and Precision
k 10 20 30 40 50 60 70 80 90 100

Enron N 67 97 122 162 109 137 172 167 171 169
ǫ(×10−8) 0.00049 0.0021 0.0046 0.0084 0.0158 0.0452 0.121 0.266 0.520 1.232
k 10 20 30 40 50 60 70 80 90 100

EM N 70 140 254 222 276 371 322 356 434 508
ǫ(×10−12) 0.470 0.902 1.160 1.272 1.526 1.649 1.687 2.027 2.124 2.254
k 10 20 30 40 50 60 70 80 90 100

RAND N 304 404 450 480 550 700 770 720 810 800
ǫ(×10−9) 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996

ing SVD for a system with 74424 users is merely about
$15, including data transfer and adjusted for difference
in CPU performance between our experiments and EC2.

To compare with alternative solutions, we imple-
mented a method based on homomorphic encryption
which is a popular private data mining technique (see
e.g., [11, 51]). We did not try other methods, such as
the “add/subtract random” approach, with players adding
their values to a running total, because they do not al-
low for verification of user data thus are insecure in our
model. We tested both ElGamal and Paillier encryptions
with the same security parameter as our P4P experiments
(i.e., 1024-bit key). With the homomorphic encryption
approach, it is almost impossible to execute the ZK ver-
ification (although there is a protocol [11]) as it takes
hours to verify one user. So we only compared the time
needed for computing the aggregates. Figure 2 shows the
ratios of running time between homomorphic encryption
and P4P for SVD on the three data sets. P4P is at least
8 orders of magnitude faster in all cases for both ElGa-
mal and Paillier. And this translates to tens of millions of
dollars of cost for the homomorphic encryption schemes
if the computation is done using Amazon’s EC2 service
not even counting data transfer expenses.

The communication overhead is also very small since
the protocol passes very few large integers. The extra
communication per client for one L2-norm ZKP is un-
der 50 kilobytes, and under 100 bytes for the consistency
check, while other solutions require some hundreds of
megabytes. This is significantly smaller than the size of
an average web page. The additional workload for the
server is less than serving an extra page to each user.

The case withκ > 2 servers: Although we do not ex-
pect the scheme to be deployed with a large number of
servers, we provide some analysis here in case stronger
protection is required. Each server’s work can be divided
into two parts: processing clients and communicating
with other servers. Most expensive interactions are with
the clients (including verifying the ZKPs etc.), which can
be performed on a single server and is independent ofκ.
The interaction among servers is simply data exchange
and there is no complex computation involved.

Data exchange among the servers serves two purposes:

Enron EM RAND
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Figure 2: Running time ratios between homomorphic en-
cryption based solutions and P4P.

reconstructing shared secrets when necessary (the final
sum in the end of each iteration and the commitments
during the verification) and reaching agreement regard-
ing a user’s status (each server needs to verify that the
user computes a share of the commitments correctly).
And since each server is semi-honest, for the second part
they only need pass the final conclusion, verification of
the ZKPs can be done on only one of the servers.

For constructing the final sum, all servers must send
their shares to the server hosting ARPACK. The later
will receive a total of8κm bytes (assuming data is en-
coded using double precision) which is about8κ MB if
m = 106. For the consistency check, during each it-
eration, one server is selected as the “master”. All other
servers sends their shares of the commitments to the mas-
ter. This includes 3n large integers inZq (3 for each
user) from each server. In addition, each non-master
server also sends to the master ann-bit bitmap, encod-
ing whether each user computes the commitments to the
shares correctly. The master will reconstruct the com-
plete commitments and verify the ZKPs. It then broad-
casts ann-bit bitmap encoding whether each user passes
the consistency check to all other servers. For the mas-
ter, the total communication cost is receiving3n(κ − 1)
integers inZq andκn-bit strings and sending(κ − 1)n
bits. With n = 106 and |q| = 1024, these amount to
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384(κ − 1) MB and approximately 0.1(κ − 1) MB, re-
spectively. For other servers, the sending and receiving
costs are approximately 384 MB and 0.1 MB, respec-
tively. We believe such cost is practical for smallκ (e.g.,
3 or 4). Note that the master does not have to be collo-
cated with the ARPACK engine so the servers can take
turns to serve as the master to share the load.

As for the computation associated with usingκ servers
(the part that is independent ofκ has been discussed
earlier and omitted here), the master needs to perform
3n(κ − 1) multiplications inZ

∗
q . Using our benchmark,

this amounts to 0.186(κ− 1) seconds forn = 106 users.
Again we believe this is practical for smallκ. The other
servers do not need to do any extra work.

7.3 Scalability

We also experimented with a few very large matrices,
with dimensionality ranging from tens of thousands to
over a hundred million. They are document-term or user-
query matrices that are used for latent semantic analysis.
To facilitate the tests, we did not include the data ver-
ification ZKPs, as our previous benchmarks show they
amount to an insignificant fraction of the cost. Due to
space and resource limit we did not test how performance
varies with dimensionality and other parameters. Rather,
these results are meant to demonstrate the capability of
our system, which we have shown to maintain privacy at
very low cost, to handle large data sets at various config-
urations.

Table 3 summarizes some of the results. The running
time measures the time of a complete run, i.e., from the
start of the job till the results are safely written to disk.
It includes both the computation time of the server (in-
cluding the time spent on invoking the ARPACK engine)
and the clients (which are running in parallel), and the
communication time. In the table, frontend processors
refer to the machines that interact with the users directly.
Large-scale systems usually use multiple frontend ma-
chines, each serving a subset of the users. This is also a
straightforward way to parallelize the aggregation pro-
cess, i.e., each frontend machine receives data from a
subset of users and aggregates them before forwarding
to the server. On one hand, the more frontend machines
the faster the sub-aggregates can be computed. On the
other hand, the server’s communication cost is linear in
the number of frontend processors. The optimal solution
must strike a balance between the two. Due to resource
limitation, we were not able to use the optimal configu-
ration for all our tests. The results are feasible even in
these sub-optimal cases.

8 Conclusion

In this paper we present a new framework for privacy-
preserving distributed data mining. Our protocol is based
on secret sharing oversmall field, achieving orders of
magnitude reduction in running time over alternative so-
lutions with large-scale data. The framework also admits
very efficient zero-knowledge tools that can be used to
verify user data. They provide practical solutions for
handling cheating users. P4P demonstrates that cryp-
tographic building blocks can work harmoniously with
existing tools, providing privacy without degrading their
efficiency. Most components described in this paper
have been implemented and the source code is avail-
able at http://bid.berkeley.edu/projects/p4p/. Our goalis
to make it a useful tool for developers in data mining
and others to build privacy preserving real-world appli-
cations.
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Notes
1Most mining algorithms need to bound the amount of noise in the

data to produce meaningful results. This means that the fraction of
cheating users is usually below a much lower threshold (e.g.α <

20%).
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