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Abstract

This paper presents SPLAY, an integrated system that
facilitates the design, deployment and testing of large-
scale distributed applications. Unlike existing systems,
SPLAY covers all aspects of the development and evalua-
tion chain. It allows developers to express algorithms in
a concise, simple language that highly resembles pseudo-
code found in research papers. The execution environ-
ment has low overheads and footprint, and provides a
comprehensive set of libraries for common distributed
systems operations. SPLAY applications are run by a
set of daemons distributed on one or several testbeds.
They execute in a sandboxed environment that shields the
host system and enables SPLAY to also be used on non-
dedicated platforms, in addition to classical testbeds like
PlanetLab or ModelNet. A controller manages applica-
tions, offering multi-criterion resource selection, deploy-
ment control, and churn management by reproducing the
system’s dynamics from traces or synthetic descriptions.
SPLAY ’s features, usefulness, performance and scalabil-
ity are evaluated using deployment of representative ex-
periments on PlanetLab and ModelNet clusters.

1 Introduction

Developing large-scale distributed applications is a
highly complex, time-consuming and error-prone task.
One of the main difficulties stems from the lack of ap-
propriate tool sets for quickly prototyping, deploying and
evaluating algorithms in real settings, when facing unpre-
dictable communication and failure patterns. Nonethe-
less, evaluation of distributed systems over real testbeds
is highly desirable, as it is quite common to discover dis-
crepancies between the expected behavior of an applica-
tion as modeled or simulated and its actual behavior when
deployed in a live network.

While there exist a number of experimental testbeds
to address this demand (e.g., PlanetLab [11], Model-
Net [35], or Emulab [38]), they are unfortunately not used
as systematically as they should. Indeed, our first-hand
experience has convinced us that it is far from straight-
forward to develop, deploy, execute and monitor appli-
cations for them and the learning curve is usually slow.
Technical difficulties are even higher when one wants to
deploy an application on several testbeds, as deployment
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scripts written for one testbed may not be directly usable
for another, e.g., between PlanetLab and ModelNet. As a
side effect of these difficulties, the performance of an ap-
plication can be greatly impacted by the technical quality
of its implementation and the skills of the person who
deploys it, overshadowing features of the underlying al-
gorithms and making comparisons potentially unsound
or irrelevant. More dramatically, the complexity of us-
ing existing testbeds discourages researchers, teachers, or
more generally systems practitioners from fully exploit-
ing these technologies.

These various factors outline the need for novel
development-deployment systems that would straightfor-
wardly exploit existing testbeds and bridge the gap be-
tween algorithmic specifications and live systems. For
researchers, such a system would significantly shorten
the delay experienced when moving from simulation to
evaluation of large-scale distributed systems (“time-to-
paper” gap). Teachers would use it to focus their lab work
on the core of distributed programming—algorithms and
protocols—and let students experience distributed sys-
tems implementation in real settings with little effort.
Practitioners could easily validate their applications in the
most adverse conditions.

There already exist several systems to ease the de-
velopment or deployment process of distributed applica-
tions. Tools like Mace [23] or P2 [26] assist the developer
by generating code from a high-level description, but do
not provide any facility for its deployment or evaluation.
Tools such as Plush [9] or Weevil [37] help for the de-
ployment process, but are restricted to situations where
the user has control over the nodes composing the testbed
(i.e., the ability to run programs remotely using ssh or
similar).

To address these limitations, we propose SPLAY, an in-
frastructure that simplifies the prototyping, development,
deployment and evaluation of large-scale systems. Un-
like existing tools, SPLAY covers the whole chain of dis-
tributed systems design and evaluation. It allows develop-
ers to specify distributed applications in a concise manner
using a platform-independent, lightweight and efficient
language based on Lua [20]. For instance, a complete
implementation of the Chord [33] distributed hash table
(DHT) requires approximately 100 lines of code.

SPLAY provides a secure and safe environment for ex-
ecuting and monitoring applications, and allows for a
simplified and unified usage of testbeds such as Planet-
Lab, ModelNet, networks of idle workstations, or per-

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation



sonal computers. SPLAY applications execute in a safe,
sandboxed environment with controlled access to local
resources (file system, network, memory) and can be in-
stantiated on a large set of nodes with a single com-
mand. SPLAY supports multi-user resource reservation
and selection, orchestrates the deployment and monitors
the whole system. It is particularly easy with SPLAY to
reproduce a given live experiment or to control several
experiments at the same time.

An important component of SPLAY is its churn man-
ager, which can reproduce the dynamics of a distributed
system based on real traces or synthetic descriptions.
This aspect is of paramount importance, as natural churn
present in some testbeds such as PlanetLab is not repro-
ducible, hence preventing a fair comparison of protocols
under the very same conditions.

SPLAY is designed for a broad range of usages, includ-

ing: (i) deploying distributed systems whose lifetime is
specified at runtime and usually short, e.g., distributing
a large file using BitTorrent [17]; (ii) executing long-
running applications, such as an indexing service based
on a DHT or a cooperative web cache, for which the
population of nodes may dynamically evolve during the
lifetime of the system (and where failed nodes must be
replaced automatically); or (iii) experimenting with dis-
tributed algorithms, e.g., in the context of hands-on net-
working class, by leveraging the isolation properties of
SPLAY to enable execution of (possibly buggy) code on a
shared testbed without interference.
Contributions. This paper introduces a distributed in-
frastructure that greatly simplifies the prototyping, devel-
opment, deployment, and execution of large-scale dis-
tributed systems and applications. SPLAY includes sev-
eral original features—notably churn management, sup-
port for mixed deployments, and platform-independent
language and libraries—that make the evaluation and
comparison of distributed systems much easier and fairer
than with existing tools.

We show how SPLAY applications can be concisely
expressed with a specialized language that closely re-
sembles the pseudo-code usually found in research pa-
pers. We have implemented several well-known systems:
Chord [33], Pastry [31], Scribe [15], SplitStream [14],
BitTorrent [17], Cyclon [36], Erdos-Renyi epidemic
broadcast [19] and various types of distribution trees [13].

Our system has been thoroughly evaluated along all its
aspects: conciseness and ease of development, efficiency,
scalability, stability and features. Experiments convey
SPLAY’s good properties and the ability of the system to
help practitioner and researcher alike through the whole
distributed system design, implementation and evaluation
chain.

Roadmap. The remaining of this paper is organized
as follows. We first discuss related work in Section 2.
Section 3 gives an overview of the SPLAY architecture
and elaborates on its design choices and rationales. In

Section 4, we illustrate the development process of a
complete application (the Chord DHT [33]). Section 5
presents a complete evaluation of SPLAY, using repre-
sentative experiments and deployments (including tests
of the Chord implementation of Section 4). Finally, we
conclude in Section 6.

2 Related Work

SPLAY shares similarities with a large body of work in
the area of concurrent and distributed systems. We only
present systems that are closely related to our approach.
Development tools. On the one hand, a set of new
languages and libraries have been proposed to ease and
speed up the development process of distributed applica-
tions.

Mace [23] is a toolkit that provides a wide set of tools
and libraries to develop distributed applications using an
event-driven approach. Mace defines a grammar to spec-
ify finite state machines, which are then compiled to C++
code, implementing the event loop, timers, state tran-
sitions, and message handling. The generated code is
platform-dependent: this can prove to be a constraint in
heterogeneous environments. Mace focuses on applica-
tion development and provides good performance results
but it does not provide any built-in facility for deploying
or observing the generated distributed application.

P2 [26] uses a declarative logic language named Over-
Log to express overlays in a compact form by specifying
data flows between nodes, using logical rules. While the
resulting overlay descriptions are very succinct, specifi-
cations in P2 are not natural to most network program-
mers (programs are largely composed of table declara-
tion statements and rules) and produce applications that
are not very efficient. Similarly to Mace, P2 does not
provide any support for deploying or monitoring applica-
tions: the user has to write his/her own scripts and tools.

Other domain-specific languages have been proposed

for distributed systems development. In RTAG [10], pro-
tocols are specified as a context-free grammar. Incoming
messages trigger reduction of the rules, which express
the sequence of events allowed by the protocol. Mor-
pheus [8] and Prolac [24] target network protocols devel-
opment. All these systems share the goal of SPLAY to
provide easily readable yet efficient implementations, but
are restricted to developing low-level network protocols,
while SPLAY targets a broader range of distributed sys-
tems.
Deployment tools. On the other hand, several tools
have been proposed to provide runtime facilities for dis-
tributed applications developers by easing the deploy-
ment and monitoring phase.

Neko [34] is a set of libraries that abstract the net-
work substrate for Java programs. A program that uses
Neko can be executed without modifications either in
simulations or in a real network, similarly to the NEST
testbed [18]. Neko addresses simple deployment issues,
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by using daemons on distant nodes to launch the virtual
machines (JVMs). Nonetheless, Neko’s network library
has been designed for simplicity rather than efficiency (as
a result of using Java’s RMI), provides no isolation of de-
ployed programs, and does not have built-in support for
monitoring. This restricts its usage to controlled settings
and small-scale experiments.

Plush [9] is a set of tools for automatic deployment and
monitoring of applications on large-scale testbeds such as
PlanetLab [11]. Applications can be remotely compiled
from source code on the target nodes. Similarly to Neko
and SPLAY, Plush uses a set of application controllers
(daemons) that run on each node of the system, and a
centralized controller is responsible for managing the ex-
ecution of the distributed application.

Along the same lines, Weevil [37] automates the cre-
ation of deployment scripts. A set of models is provided
by the user to describe the experiment. An interesting
feature of Weevil lies in its ability to replay a distributed
workload (such as a set of request for a distributed mid-
dleware infrastructure). These inputs can either be syn-
thetically generated, or recorded from a previous run or
simulation. The deployment phase does not include any
node selection mechanism: the set of nodes and the map-
ping of application instances to these nodes must be pro-
vided by the user. The created scripts allow deployment
and removal of the application, as well as the retrieval of
outputs at the end of an experiment.

Plush and Weevil share a set of limitations that make
them unsuitable for our goals. First, and most impor-
tantly, these systems propose high-end features for expe-
rienced users on experimental platforms such as Planet-
Lab, but cannot provide resource isolation due to their
script-based nature. This restricts their usage to con-
trolled testbeds, i.e., platforms on which the user has
been granted some access rights, as opposed to non-
dedicated environments such as networks of idle work-
stations where it might not be desirable or possible to
create accounts on the machines, and where the nature of
the testbed imposes to restrict the usage of their resources
(e.g., disk or network usage).Second, they do not provide
any management of the dynamics (churn) of the system,
despite its recognized usefulness [29] for distributed sys-
tem evaluation.

Testbeds. A set of experimental platforms, hereafter
denoted as festbeds, have been built and proposed to the
community. These testbeds are complementary to the
languages and deployment systems presented in the first
part of this section: they are the medium on which these
tools operate.

Distributed simulation platforms such as WiDS [25] al-
low developers to run their application on top of an event-
based network simulation layer. Distributed simulation
is known to scale poorly, due to the high load of syn-
chronization between nodes of the testbed hosting com-
municating processes. WiDS alleviates this limitation by

relaxing the synchronization model between processes
on distinct nodes. Nonetheless, event-based simulation
testbeds such as WiDS do not provide mechanisms to de-
ploy or manage the distributed application under test.

Network emulators such as Emulab [38], Model-
Net [35], FlexLab [30] or P2PLab [28] can reproduce
some of the characteristics of a networked environment:
delays, bandwidth, packet drops, etc. They basically al-
low users to evaluate unmodified applications across vari-
ous network models. Applications are typically deployed
in a local-area cluster and all communications are routed
through some proxy node(s), which emulate the topology.
Each machine in the cluster can host several end-nodes
from the emulated topology.

The PlanetLab [11] testbed (and forks such as Ever-
lab [22]) allows experimenting in live networks by host-
ing applications on a large set of geographically dispersed
hosts. It is a very valuable infrastructure for testing dis-
tributed applications in the most adverse conditions.

SPLAY is designed to complement these systems.
Testbeds are useful but, often, complex platforms. They
require the user to know how to deploy applications, to
have a good understanding of the target topology, and to
be able to properly configure the environment for exe-
cuting his/her application (for instance, one needs to use
a specific library to override the IP address used by the
application in a ModelNet cluster). In PlanetLab, it is
time-consuming and error-prone to choose a set of non-
overloaded nodes on which to test the application, to de-
ploy and launch the program, and to retrieve the results.
Finally, considering mixed deployments that use several
testbeds at the same time for a single experiment would
require to write even much more complex scripts (e.g.,
taking into account problems such as port range forward-
ing). With SPLAY, as soon as the administrator who de-
ployed the infrastructure has set up the network, using a
complex testbed is as straightforward for the user as run-
ning an application on a local machine.

3 The SPLAY Framework

We present the architecture of our system: its main com-
ponents, its programming language, libraries and tools.

3.1 Architecture

The SPLAY framework consists of about 15,000 lines of
code written in C, Lua, Ruby, and SQL, plus some third-
party support libraries. Roughly speaking, the architec-
ture is made of three major components. These compo-
nents are depicted in Figure 1.

e The controller, splayctl, is atrusted entity that con-
trols the deployment and execution of applications.

o A lightweight daemon process, splayd, runs on every
machine of the testbed. A splayd instantiates, stops,
and monitors SPLAY applications when instructed by the
controller.

e SPLAY applications execute in sandboxed processes
forked by splayd daemons on participating hosts.
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Figure 1: An illustration of two SPLAY applications (BitTorrent
and Chord) at runtime.

Many SPLAY applications can run simultaneously on
the same host. The testbed can be used transparently by
multiple users deploying different applications on over-
lapping sets of nodes, unless the controller has been con-
figured for a single-user testbed. Two SPLAY applica-
tions on the same node are unaware of each other (they
cannot even exchange data via the file system); they can
only communicate by message passing as for remote pro-
cesses. Figure 1 illustrates the deployment of multiple ap-
plications with a host participating to both a Chord DHT
and a BitTorrent swarm.

An important point is that SPLAY applications can be
run locally with no modification to their code, while
still using all libraries and language features proposed
by SPLAY. Users can simply and quickly debug and test
their programs locally, prior to deployment.

We now discuss in more details the different compo-

nents of the SPLAY architecture.
Controller. The controller plays an essential role in our
system. It is implemented as a set of cooperating pro-
cesses and executes on one or several trusted servers. The
only central component is a database that stores all data
pertaining to participating hosts and applications.

The controller (see Figure 2) keeps track of all active
SPLAY daemons and applications in the system. Upon
startup, a daemon initiates a secure connection (SSL) to a
ct1 process. For scalability reasons, there can be many
ct 1 processes spread across several trusted hosts. These
processes only need to access the shared database.

SPLAY daemons open connections to 1og processes
on behalf of the applications, if the logging library is
used. This library is described in section 3.4.

The deployment of a distributed application is achieved
by submitting a job through a command-line or Web-
based interface. SPLAY also provides a Web services API
that can be used by other projects. Once registered in
the database, jobs are handled by jobs processes. The
nodes participating in the deployment can be specified
explicitly as a list of hosts, or one can simply indicate
the number of nodes on which deployment has to take
place, regardless of their identity. One can also specify
requirements in terms of resources that must be available
at the participating nodes (e.g., bandwidth) or in terms
of geographical location (e.g., nodes in a specific country
or within a given distance from a position). Incremental
deployment, i.e., adding nodes at different times, can be
performed using several jobs or with the churn manager.

splayctl
Figure 2: Architecture of the SPLAY controller (note that all
components may be distributed on different machines).

Each daemon is associated with records in the database
that store information about the applications and active
hosts running them, or scheduled for execution. The con-
troller monitors the daemons and uses a session mecha-
nism to tolerate short-term disconnections (i.e., a daemon
is considered alive if it shows activity at least once during
a given time period). Only after a long-term disconnec-
tion (typically one hour) does the controller reset the sta-
tus of the daemon and clean up the associated entries in
the database. This task is under the responsibility of the
unseen process. The blacklist process manages in
the database a list of forbidden network addresses and
masks; it piggybacks updates of this list onto messages
sent to connected daemons.

Communication between the daemon and the con-
troller follows a simple request/answer protocol. The first
request originates from the daemon that connects to the
controller. Every subsequent command comes from the
controller. For brevity, we only present here a minimal
set of commands.

The jobs process dequeues jobs from the database
and searches for a set of hosts matching the constraints
specified by the user. The controller sends a REGIS—
TER message to the daemons of every selected node. In
case the identity of the nodes is not explicitly specified,
the system selects a set larger than the one originally re-
quested to account for failed or overloaded nodes. Upon
accepting the job, a daemon sends to the controller the
range of ports that are available to the application. Once
it receives enough replies, the controller first sends to ev-
ery selected daemon a LI ST message with the addresses
of some participating nodes (e.g., a single rendez-vous
node or a random subset , depending on the application)
to bootstrap the application, followed by a START mes-
sage to begin execution. Supernumerary daemons that
are slow to answer and active applications that must be
terminated receive a FREE message. The state machine
of a SPLAY job is as follows:

REGISTER LIST START

(w
.'|,

The reason why we initially select a larger set of
nodes than requested clearly appears when considering
the availability of hosts on testbeds like PlanetLab, where
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transient failures and overloads are the norm rather than
the exception. Figure 3 shows both the cumulative and
discretized distributions of round-trip times (RTT) for a
20 KB message over an already established TCP con-
nection from the controller to PlanetLab hosts. One can
observe that only 17.10% of the nodes reply within 250
milliseconds, and over 45% need more than 1 second. Se-
lecting a larger set of candidates allows us to choose the
most responsive nodes for deploying the application.

100 100
_ 80 ul 80 &
% 60 60 &
Q (@]
© 20 20 3

0 —— 0

0 1t 2 3 4 5 6 7 8 9 10
Delay (seconds)

Figure 3: RTT between the controller and PlanetLab hosts over
pre-established TCP connections, with a 20 KB payload.

Daemons. SPLAY daemons are installed on participat-
ing hosts by a local user or administrator. The local ad-
ministrator can configure the daemon via a configuration
file, specifying various instance parameters (e.g., daemon
name, access key, etc.) and restrictions on the resources
available for SPLAY applications. These restrictions en-
compass memory, network, and disk usage. If an applica-
tion exceeds these limitations, it is killed (memory usage)
or I/O operations fail (disk or network usage). The con-
troller can specify stricter—but not weaker—restrictions
at deployment time.

Upon startup, a SPLAY daemon receives a blacklist of
forbidden addresses expressed as IP or DNS masks. By
default, the addresses of the controllers are blacklisted so
that applications cannot actively connect to them. Black-
lists can be updated by the controller at runtime (e.g.,
when adding a new daemon or for protecting a particu-
lar machine).

The daemon also receives the address of a 1 og process
to connect to for logging, together with a unique identifi-
cation key. SPLAY applications instantiated by the local
daemon can only connect to that log process; other pro-
cesses will reject any connection request.

3.2 Churn Management

In order to fully understand the behavior and robust-
ness of a distributed protocol, it is necessary to evalu-
ate it under different churn conditions. Theses condi-
tions can range from rare but unpredictable hardware fail-
ures, to frequent application-level disconnections, as usu-
ally found in user-driven peer-to-peer systems, or even
to massive failures scenarios. It is also important to al-
low comparison of competing algorithms under the very
same churn scenarios. Relying on the natural, non-
reproducible churn of testbeds such as PlanetLab often
proves to be insufficient.

There exist several characterizations of churn that can
be leveraged to reproduce realistic conditions for the pro-

tocol under test. First, synthetic descriptions issued from
analytical studies [27] can be used to generate churn sce-
narios and replay them in the system. Second, several
traces of the dynamics of real networks have been made
publicly available by the community (e.g., see the repos-
itory at [1]); they cover a wide range of applications
such as a highly churned file-sharing system [12] or high-
performance computing clusters [32].

1 < 2 >< 3 >4< 5 >6

1 at 30s join 10 Nodes leaving »
2 from 5m to 10m inc 10 Nodes joining ==—= 1 30§
3 from 10m to 15m const Ial ?gf

churn 50% E 40 0 g
4 at 15m leave 50% ‘@ 30
5 from 15m to 20m inc 10 5. 20

churn 150% g 10 -!HHHH“
6 at 20m stop § 0 10 15 20

Time (minutes)

Figure 4: Example of a synthetic churn description: script
(left), binned number of joins/leave (right, bottom) and total
number of nodes (right, top).

SPLAY incorporates a component, churn (see Fig-
ure 2), dedicated to churn management. This component
can send instructions to the daemons for stopping and
starting processes on-the-fly. Churn can be specified as
a trace, in a format similar to that used by [1], or as a syn-
thetic description written in a simple script language. The
trace indicates explicitly when each node enters or leaves
the system while the script allows users to express phases
of the application’s lifetime, such as a steady increase or
decrease of the number of peers over a given time du-
ration, periods with continuous churn, massive failures,
join flash crowds, etc. An example script is shown in
Figure 4 together with a representation of the evolution
of the node population and the number of arrivals and de-
partures during each one-minute period: an initial set of
nodes joins after 30 seconds, then the system stabilizes
before a regular increase, a period with a constant popu-
lation but a churn that sees half of the nodes leave and an
equal number join, a massive failure of half of the nodes,
another increase under high churn, and finally the depar-
ture of all the nodes.

Section 5.5 presents typical uses of the churn manage-
ment mechanism in the evaluation of a large-scale dis-
tributed system. It is noteworthy that the churn manage-
ment system relieves the need for fault injection systems
such as Loki [16]. Another typical use of the churn man-
agement system is for long-running applications, e.g., a
DHT that serves as a substrate for some other distributed
application under test and needs to stay available for the
whole duration of the experiments. In such a scenario,
one can ask the churn manager to maintain a fixed-size
population of nodes and to automatically bootstrap new
ones as faults occur in the testbed.

3.3 Language and Applications

SPLAY applications are written in the Lua language [20],
whose features are extended by SPLAY’s libraries. This
design choice was dictated by four majors factors. First,
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the most important reason is that Lua has unique features
that allow to simply and efficiently implement sandbox-
ing. As mentioned earlier, sandboxing is a sound basis
for execution in non-dedicated environments, where re-
sources need to be constrained and where the hosting op-
erating system must be shielded from possibly buggy or
ill-behaved code. Second, one of SPLAY’s goals is to
support large numbers of processes within a single host
of the testbed. This calls for a low footprint for both
the daemons and the associated libraries. This excludes
languages such as Java that require several megabytes
of memory just for their execution environment. Third,
SPLAY must ensure that the achieved performance is as
good as the host system permits, and the features offered
to the distributed system designer shall not interfere with
the performance of the application. Fourth, SPLAY allows
deployment of applications on any hardware and on any
operating systems. This requires a “write-once, run ev-
erywhere” approach that calls for either an interpreted or
bytecode-based language. Lua’s unique features allow us
to meet these goals of lightness, simplicity, performance,
security and generality.

Lua was designed from the ground up to be an effi-
cient scripting language with very low footprint. Accord-
ing to recent benchmarks [2], Lua is among the fastest
interpreted scripting languages. It is reflective, impera-
tive, and procedural with extensible semantics. Lua is dy-
namically typed and has automatic memory management
with incremental garbage collection. The small footprint
from Lua results from its design that provides flexible
and extensible meta-features, rather than a complete set
of general-purpose facilities. The full interpreter is less
than 200 kB and can be easily embedded. Applications
can use libraries written in different languages (especially
C/C++). This allows for low-level programming if need
be. Our experiments (Section 5) highlight the lightness
of SPLAY applications using Lua, in terms of memory
footprint, load, and scalability.

Lua’s interpreter can directly execute source code,
as well as hardware-dependent (but operating system-
independent) bytecode. In SPLAY, the favored way of
submitting applications is in the form of source code, but
bytecode programs are also supported (e.g., for intellec-
tual property protection).

Isolation and sandboxing are achieved thanks to Lua’s
support for first-class functions with lexical scoping and
closures, which allow us to restrict access to I/O and net-
working libraries. We modify the behavior of these func-
tions to implement the restrictions imposed by the admin-
istrator or by the user at the time he/she submits the ap-
plication for deployment over SPLAY.

Lua also supports cooperative multitasking by the
means of coroutines, which are at the core of SPLAY’s
event-based model (discussed below).

st — [“ussocker | L psewdote || ovete |
sb_stdlib sb_socket llenc || misc |
events [ socketevents | | jgan* |
threads
locks ‘ log || fpe ‘ splay::app

*: third—party libraries

Figure 5: Overview of the main SPLAY libraries.

3.4 The Libraries

SPLAY includes an extensible set of shared libraries (see
Figure 5) tailored for the development of distributed ap-
plications and overlays. These libraries are meant to be
also used outside of the deployment system, when de-
veloping the application. We briefly describe the major
components of these libraries.

Networking. The luasocket library provides basic
networking facilities. We have wrapped it into a restricted
socket library, sb_socket, which includes a security
layer that can be controlled by the local administrator (the
person who has instantiated the local daemon process)
and further restricted remotely by the controller. This se-
cure layer allows us to limit: (1) the total bandwidth avail-
able for SPLAY applications (instantaneous bandwidth
can be limited using shaping tools if need be); (2) the
maximum number of sockets used by an application and
(3) the addresses that an application can or cannot con-
nect to. Restrictions are specified declaratively in con-
figuration files by the local user that starts the daemon,
or at the controller via the command-line and Web-based
APIs.

We have implemented higher-level abstractions for
simplifying communication between remote processes.
Our API supports message passing over TCP and UDP,
as well as access to remote function and variables us-
ing RPCs. Calling a remote function is almost as sim-
ple as calling a local one (see code in next section). All
arguments and return values are transparently serialized.
Communication errors are reported using a second return
value, as allowed by Lua.

Finally, communication libraries can be instructed to
drop a given proportion of the packets (specified upon
deployment): this can be used to simulate lossy links and
study their impact on an application.

Sandboxed virtual filesystem. Overlays and dis-
tributed applications often need to use the local file sys-
tem. For instance, when instantiating the BitTorrent pro-
tocol to replicate a large file on a set of nodes, temporary
data must be written to disk as chunks are being received.
Following our goal to not impact the hosting operating
system, we need to ensure that a SPLAY application can-
not access or overwrite any data on the host file system.
To this end, SPLAY includes a library, sb_ s, that wraps
the standard io library and provides restricted access to
the file system in an OS-independent fashion.

Our wrapped library simulates a file system inside a
single directory. The library transparently maps a com-
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plete path name to the underlying files that stores the ac-
tual data, and applications can only read the files located
in their private directory. The wrapped file handles en-
force additional restrictions, such as limitations on the
disk space and the number of opened files.

Events, threads and locks. SPLAY proposes a thread-
ing model based on Lua’s coroutines combined with
event-based programming. Unlike preemptive threads,
coroutines yield the processor to each other (cooperative
multitasking). This happens at special points in base li-
braries, typically when performing an operation that may
block (e.g., disk or network I/O). This is typically trans-
parent to the application developer. Although a single
SPLAY application will not benefit from a multicore pro-
cessor, coroutines are preferable to system-level threads
for two reasons: their portability and their recognized ef-
ficiency (low latency and high throughput) for programs
that use many network connections (using either non-
blocking or RPC-based programming), which is typical
of distributed systems programming. Moreover, using a
single process (at the operating system level) has a lower
footprint, especially from a sandboxing perspective, and
allows deploying more applications on each splayd.

Shared data accesses are also safer with coroutines, as
race conditions can only occur if the current thread yields
the processor. This requires, however, a good understand-
ing of the behavior of the application (we illustrate a com-
mon pitfall in Section 4). SPLAY provides a lock library
as a simple alternative to protect shared data from con-
current accesses by multiple coroutines.

We have also developed an event library, event s, that
controls the main execution loop of the application, the
scheduler, the communication between coroutines, time-
outs, as well as event generation, waiting, and recep-
tion. To integrate with the event library, we have wrapped
the socket library to produce a non-blocking, coroutine-
aware version sb_socket. All these layers are trans-
parent to the SPLAY developer who only sees a restricted,
non-blocking socket library.

Logging. An important objective of SPLAY is to be able
to quickly prototype and experiment with distributed al-
gorithms. To that end, one must be able to easily debug
and collect statistics about the SPLAY application at run-
time. The 1og library allows the developer to print infor-
mation either locally (screen, file) or, more interestingly,
send it over the network to a log collector managed by the
controller. If need be, the amount of data sent to the log
collector can be restricted by a splayd, as instructed by
the controller. As with most log libraries, facilities are
provided to manage different log levels and dynamically
enable or disable logging.

Other libraries. SPLAY provides a few other libraries
with facilities useful for developing distributed systems
and applications. The 11enc and json libraries [3] sup-
port automatic and efficient serialization of data to be sent

to remote nodes over the network. We developed the first
one, 1lenc, to simplify message passing over stream-
oriented protocols (e.g., TCP). The library automatically
performs message demarcation, computing buffer sizes
and waiting for all packets of a message before deliv-
ery. It uses the json library to automate encoding of any
type of data structures using a compact and standardized
data-interchange format. The crypto library includes
cryptographic functions for data encryption and decryp-
tion, secure hashing, signatures, etc. The misc library
provides common containers, functions for format con-
version, bit manipulation, high-precision timers and dis-
tributed synchronization.

The memory footprint of these libraries is remarkably
small. The base size of a SPLAY application is less than
600 kB with all the abovementioned libraries loaded. It
is easy for administrators to deploy additional third-party
software with the daemons, in the form of libraries. Lua
has been design to seamlessly interact with C/C++, and
other languages that bind to C can be used as well. For
instance, we successfully linked some Splay application
code with a third-party video transcoding library in C, for
experimenting with adaptive video multicast. Obviously,
the administrator is responsible for providing sandboxing
in these libraries if required.

4 Developing Applications with SPLAY

This section illustrates the development of an application
for SPLAY. We use the well-known Chord overlay [33]
for its familiarity to the community. As we will see,
the specification of this overlay is remarkably concise
and close to the pseudo-code found in the original paper.
We have successfully deployed this implementation on
a ModelNet cluster and PlanetLab; results are presented
in Section 5.2. The goal here is to provide the reader
with a complete chain of development, deployment, and
monitoring of a well-known distributed application. Note
that local testing and debugging is generally done outside
of the deployment framework (but still, using SPLAY li-
braries).

Chord is a distributed hash table (DHT) that maps keys
to nodes in a peer-to-peer infrastructure. Any node can
use the DHT substrate to determine the current live node
that is responsible for a given key. When joining the net-
work, a node receives a unique identifier (typically by
hashing its IP address and port number) that determines
its position in the identifier space. Nodes are organized
in a ring according to their identifiers, and every node
is responsible for the keys that fall between itself (inclu-
sive) and its predecessor (exclusive). In addition to keep-
ing track of their successors and predecessors on the ring,
each node maintains a “finger” table whose entries point
to nodes at an exponentially increasing distance from the
current node’s position. More precisely, the i* entry of a
node with identifier n designates the live node responsi-
ble for key n + 2¢. Note that the successor is effectively
the first entry in the finger table.
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function join(n0) —— n0: some node in the ring
predecessor = nil
finger[1] = call(n0, {’find_successor’, n.id})
call(finger[1], {"notify’, n})

end

function stabilize() —— periodically verify n’s successor
local x = call(finger[1], ’predecessor’)

if x and between(x.id, n.id, finger[1].id, false, false) then

finger[1] = x — — new successor
end
call(finger[1], {"notify’, n})
end

function notify(n0) —— n0 thinks it might be our predecessor
if not predecessor or between(n0.id, predecessor.id, n.id, false, false) then
predecessor = n0 — — new predecessor
end
end

function fix_fingers() — — refresh fingers
refresh = (refresh % m) + 1 —— 1 <refresh<m
finger[refresh] = find_successor((n.id + 2"(refresh — 1)) % 2"m)

end

function check_predecessor() — — checks if predecessor has failed
if predecessor and not ping(predecessor) then
predecessor = nil
end
end

Listing 1: SPLAY code for Chord overlay (stabilization).

Listing 1 shows the code for the construction and main-
tenance of the Chord overlay. For clarity, we only show
here the basic algorithm that was proposed in [33] (the
reader can appreciate the similarity between this code and
Figure 6 of the referenced paper).

Function join () allows a node to join the Chord
ring. Only its successor is set: its predecessor and suc-
cessor’s predecessor will be updated as part of the sta-
bilization process. Function stabilize () periodi-
cally verifies that a node is its own successor’s pre-
decessor and notifies the successor. SPLAY base li-
brary’s between call determines the inclusion of a
value in a range, on a ring. Function notify () tells
a node that its predecessor might be incorrect. Func-
tion fix_fingers () iteratively refreshes fingers. Fi-
nally, function check_predecessor () periodically
checks if a node’s predecessor has failed.

These functions are identical in their behavior and very
similar in their form to those published in [33]. Yet,
they correspond to executable code that can be readily
deployed. The implementation of Chord illustrates a sub-
tle problem that occurs frequently when developing dis-
tributed applications from a high-level pseudo-code de-
scription: the reception of multiple messages may trigger
concurrent operations that perform conflicting modifica-
tions on the state of the node. SPLAY’s coroutine model
alleviates this problem in some, but not all, situations.
During the blocking call to ping () on line 26 of List-
ing 1, a remote call to notify () can update the pre-
decessor, which may be erased on line 27 until the next
remote call to notify (). This is not a major issue as
it may only delay stabilization, not break consistency. It
can be avoided by adding an extra check after the ping
or, more generally, by using the locks provided by the

SPLAY standard libraries (not shown here).

—— ask node to find id’s successor
— — inclusive for second bound

30 function find_successor(id)
31 if between(id, n.id, finger[1].id, false, true)
32 return finger[1]

33 end

34 local n0 = closest_preceding-node(id)

35 return call(n0, { find_successor’, id})

36 end

37 function closest_preceding_node(id) — — finger preceding id
33 fori=m, 1, —1do

39 if finger[i] and between(finger[i].id, n.id, id, false, false) then

40 return finger[i]

41 end

42 end

3 return n

44 end

Listing 2: SPLAY code for Chord overlay (lookup).

the code for Chord lookup.
Function find_successor () looks for the
successor of a given identifier, while function
closest_preceding_node () returns the highest
predecessor of a given identifier found in the finger table.
Again, one can appreciate the similarity with the original
pseudo-code.

This almost completes our minimal Chord implemen-
tation, with the exception of the initialization code shown
in Listing 3. One can specifically note the registration of
periodic stabilization tasks and the invocation of the main
event loop.

Listing 2 shows

— — events, misc, socket (core libraries)
—— rpc (optional library)
—— aliases

require "splay.base”
2 rpc = require "splay.rpc”
between, call, ping = misc.between_c, rpc.call, rpc.ping

w

45 timeout =15 — — stabilization frequency
46 m=24 —— 2™ nodes and key with identifiers of length m
47 n=job.me —— our node {ip, port, id}

— — random position on ring

— — previous node on ring {id, ip, port}
— — finger table with m entries

— — next finger to refresh

— — first peer is rendez—vous node

— — start rpc server

—— join chord ring

— — periodically check successor, ...
—— predecessor, ...
—— and fingers

—— execute main loop

n.id = math.random(1, 2"m)
predecessor = nil

finger = {[1]=n}

refresh = 0

n0 = job.nodes[1]

rpe.server(n.port)
events.thread(function() join(n0) end)
events.periodic(stabilize, timeout)
events.periodic(check_predecessor, timeout)
events.periodic(fix-fingers, timeout)
events.loop()

Listing 3: SPLAY code for Chord overlay (initialization).

While this code is quite classical in its form, the re-
markable features are the conciseness of the implemen-
tation, the closeness to pseudo-code, and the ease with
which one can communicate with other nodes of the sys-
tem by RPC. Of course, most of the complexity is hidden
inside the SPLAY infrastructure.

The presented implementation is not fault-tolerant. Al-
though the goal of this paper is not to present the design
of a fault-tolerant Chord, we briefly elaborate below on
some steps needed to make Chord robust enough for run-
ning on error-prone platforms such as PlanetLab. The
first step is to take into account the absence of a reply to
an RPC. Consider the call to predecessor in method
stabilize (). One simply needs to replace this call
by the code of Figure 4.
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1 function stabilize() —— rpc.acall() returns both status and results
2 local ok, x = rpc.a_call(finger[1], "predecessor’, 60) —— RPC, 1m timeout
3 if not ok then

4 suspect(finger[1]) — — will prune the node out of local routing tables
5 else

6

(o)

Listing 4: Fault-tolerant RPC call

We omit the code of function suspect () for brevity.
Depending on the reliability of the links, this function
prunes the suspected node after a configurable number
of missed replies. One can tune the RPC timeout accord-
ing to the target platform (here, 1 minute instead of the
standard 2 minutes), or use an adaptive strategy (e.g., ex-
ponentially increasing timeouts). Finally, as suggested
by [33] and similarly to the leafset structure used in Pas-
try [31], we replace the single successor and predecessor
by a list of 4 peers in each direction on the ring.

Our Chord implementation without fault-tolerance is
only 58 lines long, which represents an increase of 18%
over the pseudo-code from the original paper (which does
not contain initialization code, while our code does). Our
fault-tolerant version is only 100 lines long, i.e., 73%
more than the base implementation (29% for fault tol-
erance, and 44% for the leafset-like structure). We de-
tail the procedure for deployment and the results obtained
with both versions on a ModelNet cluster and on Planet-
Lab, respectively, in Section 5.2.

S Evaluation

This section presents a thorough evaluation of SPLAY
performance and capabilities. Evaluating such an infras-
tructure is a challenging task as the way users will use
it plays an important role. Therefore, our goal in this
evaluation is twofold: (1) to present the implementation,
deployment and observation of real distributed systems
by using SPLAY’s capability to easily reproduce experi-
ments that are commonly used in evaluations and (2) to
study the performance of SPLAY itself, both by compar-
ing it to other widely-used implementations and by eval-
uating its costs and scalability. The overall objective is to
demonstrate the usefulness and benefits of SPLAY rather
than evaluate the distributed applications themselves. We
first demonstrate in Section 5.1 SPLAY’s capabilities to
easily express complex system in a concise manner. We
present in Section 5.2 the deployment and performance
evaluation of the Chord DHT proposed in Section 4, us-
ing a ModelNet [35] cluster and PlanetLab [11]. We then
compare in Section 5.3 the performance and scalability of
the Pastry [31] DHT written with SPLAY against a legacy
Java implementation, FreePastry [4]. Sections 5.4 and 5.5
evaluate SPLAY’s ability to easily (1) deploy applications
in complex network settings (mixed PlanetLab and Mod-
elNet deployment) and (2) reproduce arbitrary churn con-
ditions. Section 5.6 focuses on SPLAY performance for
deploying and undeploying applications on a testbed. We
conclude in Section 5.7 with an evaluation of SPLAY’s
performance with resource-intensive applications (tree-

based content dissemination and long-term running of a
cooperative Web cache).

Experimental setup. Unless specified otherwise, our ex-
perimentations were performed either on PlanetLab, us-
ing a set of 400 to 450 hosts, or on our local cluster (11
nodes, each equipped with a 2.13 Ghz Core 2 Duo pro-
cessor and 2 GB of memory, linked by a 1 Gbps switched
network). All nodes run GNU/Linux 2.6.9. A separate
node running FreeBSD 4.11 is used as a ModelNet router,
when required by the experiment. Our ModelNet con-
figuration emulates 1,100 hosts connected to a 500-node
transit-stub topology. The bandwidth is set to 10Mbps for
all links. RTT between nodes of the same domain is 10
ms, stub-stub and stub-transit RTT is 30 ms, and transit-
transit (i.e., long range links) RTT is 100 ms. These set-
tings result in delays that are approximately twice those
experienced in PlanetLab.

5.1 Development complexity

We developed the following applications using SPLAY:
Chord [33] and Pastry [31], two DHTs; Scribe [15], a
publish-subscribe system; SplitStream [14], a bandwidth-
intensive multicast protocol; a cooperative web-cache
based on Pastry; BitTorrent [17], a content distribution
infrastructure;' and Cyclon [36], a gossip-based member-
ship management protocol. We have also implemented
a number of classical algorithms, such as epidemic dif-
fusion on Erdds-Renyi random graphs [19] and vari-
ous types of distribution trees [13] (n-ary trees, paral-
lel trees). As one can note from the following figure, all
implementations are extremely concise in terms of lines
of code (LOC). Note that we did not try to compact the
code in a way that would impair readability. Numbers and
darker bars represent LOC for the protocol, while lighter
bars represent protocols acting as a substrate (Scribe and
our Web cache are based on Pastry, SplitStream is based
on both Pastry and Scribe):

Chord {‘(basé) 3 58 (base) + 17 (FT) + 26 (leafset) = 100
Pastry I 265
Scribe Pastry I 79
SplitStream Pastry Seribe” I 58
WebCache Pastry 85
BitTorrent I 420

Cyclon I 93
Epidemic [ 35
Trees HEEEN 47

Although the number of lines is clearly just a rough
indicator of the expressiveness of a system, it is still a
valuable metric to estimate programming efforts. Our
implementations are systematically more compact than
those written with Mace [23] (by approximately a factor
of two) and comparable to P2’s [26] specifications. A
well-documented protocol such as Chord only took a few
hours to implement and debug. In contract, BitTorrent,
being a complex and underspecified protocol, required
several days of development. In both cases, the develop-
ment process greatly benefited from the short deployment
and testing phase, made almost trivial by SPLAY.
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Figure 6: Performance results of Chord, deployed on a ModelNet cluster and on PlanetLab.

5.2 Testing the Chord Implementation

This section presents the deployment and performance re-
sults of the Chord implementation from Section 4. We
proceed with two deployments. First, the exact code pre-
sented in this paper is deployed in a ModelNet testbed
with no node failure. Second, a slightly modified version
of this code is run on PlanetLab. This version includes the
extensions presented at the end of Section 4: use of a leaf
set instead of a single successor and a single predecessor,
fault-tolerant RPCs, and shorter stabilization intervals.

Chord on ModelNet. To parameterize the deployment
of the Chord implementation presented in Section 4 on
a testbed, we create a descriptor that describes resources
requirements and limitations. The descriptor allows to
further restrict memory, disk and network usage, and it
specifies what information an application should receive
when instantiated:

——[[ BEGIN SPLAY RESOURCES RESERVATION

nb_splayd 1000
nodes head 1
END SPLAY RESOURCES RESERVATION ]]

This descriptor requests 1,000 instances of the appli-
cation and specifies that each instance will receive three
essential pieces of information: (1) a single-element list
containing the first node in the deployment sequence (to
act as rendezvous node); (2) the rank of the current pro-
cess in the deployment sequence; and (3) the identity of
the current process (host and port). This information is
useful to bootstrap the system without having to rely on
external mechanisms such as a directory service. In the
case of Chord, we use this information to have hosts join
the network one after the other, with a delay between con-
secutive joins to ensure that a single ring is created. A
staggered join strategy allows better experiments repro-
ducibility, but a massive join scenario would succeed as
well. The following code is added:

events.sleep(job.position)

if #job.position > 1 then
join(job.nodes[1])

end

—— Is between joins
— — first node is rendez—vous node

Finally, we register the Lua script and the deployment
descriptor using one of the command line, Web service or
Web-based interfaces.

Each host runs 27 to 91 Chord nodes (we show in Sec-
tion 5.3 that SPLAY can handle many more instances on a
single host). During the experiment, each node injects 50
random lookup requests in the system. We then undeploy

the overlay, and process the results obtained from the log-
ging facility. Figure 6(a) presents the distribution of route
lengths. Figure 6(b) presents the cumulative distribution
of latencies. The average number of hops is below IOgT"‘N
and the look-up time remains small. This supports our
observations that SPLAY is efficient and does not intro-

duce additional delays or overheads.

Chord on PlanetLab. Next, we deploy our Chord im-
plementation with extensions on 380 PlanetLab nodes
and compare its performance with MIT’s fine-tuned C++
Chord implementation [5] in terms of delays when look-
ing up random keys in the DHT. In both cases, we let
the Chord overlay stabilizes before starting the measure-
ments. Figure 6(c) presents the cumulative distribution of
delays for 5000 random lookups (average route length is
4.1 for both systems). We observe that MIT Chord out-
performs Chord for SPLAY, because it relies on a cus-
tom network layer that uses, amongst other optimiza-
tions, network coordinates for constructing latency-aware
finger tables. In contrast, we did not include such opti-
mizations in our implementation.

5.3 SPLAY Performance

We evaluate the performance of applications using
SPLAY in two ways. First, we evaluate the efficiency of
the network libraries, based on the delays experienced by
a sample application on a high-performance testbed. Sec-
ond, we evaluate scalability: how many nodes can be run
on a single host and what is the impact on performance.
For these tests we chose Pastry [31] because: (i) it com-
bines both TCP and UDP communications; (ii) it requires
efficient network libraries and transport layers, each node
being potentially opening sockets and sending data to
a large number of other peers; (iii) it supports network
proximity-based peer selection, and as such can be af-
fected by fluctuating or unstable delays (for instance due
to overload or scheduling issues).

We compare our version of Pastry with FreePastry
2.0 [4], a complete implementation of the Pastry proto-
col in Java. Our implementation is functionally identi-
cal to FreePastry and uses the very same protocols, e.g.,
locality-aware routing table construction and stabilization
mechanisms to repair broken routing table entries. The
only notable differences reside in the message formats
(no wire compatibility) and the choice of alternate routes
upon failure.

We deployed FreePastry using all optimizations ad-
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Figure 7: Comparisons of two implementations of Pastry: FreePastry and Pastry for SPLAY.

vised by the authors, that is, running multiple nodes
within the same JVM, replacing Java serialization with
raw serialization, and keeping a pool of opened TCP con-
nections to peers to avoid reopening recently used con-
nections. We used 3 JVMs on our dual cores machines,
each running multiple Pastry nodes. With a large set of
nodes, our experiments have shown that this configura-
tion yields slightly better results than using a single JVM,
both in terms of delay and load.

Figure 7(a) presents the cumulative delay distribution
in a converged Pastry ring. The distribution of route
lengths (not shown) is slightly better with FreePastry
thanks to optimizations in the routing table management.
Delays obtained with Pastry on SPLAY are much lower
than the delays obtained with FreePastry. This experi-
ment shows that SPLAY, while allowing for concise and
readable protocol implementations, does not trade sim-
plicity for efficiency. We also notice that Java-based pro-
grams are often too heavyweight to be used with multi-
ple instances on a single host.? This is further conveyed
by our second experiment that compares the evolution of
delays of FreePastry (Figure 7(b)) and Pastry for SPLAY
(Figure 7(c)) as the number of nodes on the testbed in-
creases. We use a percentile-based plotting method that
allows expressing the evolution of a cumulative distribu-
tion of delays with respect to the number of nodes. We
can observe that: (1) delays start increasing exponentially
for FreePastry when there are more than 1,600 nodes run-
ning in the cluster, that is 145 nodes per host (recall that
all nodes on a single host are hosted by only 3 JVMs and
share most of their memory footprint); (2) it is not possi-
ble to run more than 1,980 FreePastry nodes, as the sys-
tem will start swapping, degrading performance dramat-
ically; (3) SPLAY can handle 5,500 nodes (500 on each
host) without significant drop in performance (other than
the O(log N) route lengths evolution, NV being the num-
ber of nodes).

Figure 8 presents the load (i.e., average number of pro-
cesses with “runnable” status, as reported by the Linux
scheduler) and memory consumption per instance for
varying number of instances. Each process is a Pastry
node and issues a random request every minute. We ob-
serve that the memory footprint of an instance is lower
than 1.5 MB, with just a slight increase during the ex-
periment as nodes fill their routing table. It takes 1,263
Pastry instances before the host system starts swapping

memory to disk. Load (averaged over the last minute)
remains reasonably low, which explains the small delays
presented by Figure 7(c).
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Figure 8: Memory consumption and load evolution on a single

node hosting several instances of Pastry for SPLAY.

5.4 Complex Deployments

SPLAY is designed to be used within a large set of differ-
ent testbeds. Despite this diversity, it is sometimes also
desirable to experiment with more than a single testbed at
a time. For instance, one may want to evaluate a complex
system with a set of peers linked by high bandwidth, non-
lossy links, emulated by ModelNet, and a set of peers fac-
ing adverse network conditions on PlanetLab. A typical
usage would be to test a broker-based publish-subscribe
infrastructure deployed on reliable nodes, along with a
set of client nodes facing churn and lossy network links.

Such a mixed deployment requires a deep understand-
ing of the system for setting it up using scripting and
common tools, as the user has to care about NAT and
firewalls traversal, port forwarding, etc. The experiment
presented in this section shows that such a complex mixed
deployment can be achieved using SPLAY as if it were on
a single testbed. The only precondition is that the admin-
istrator of the part of the testbed that is behind a NAT
or firewall defines (and opens) a range of ports that all
splayds will use to communicate with other daemons
outside the testbed. Notably for a ModelNet cluster, this
operation can easily be done at the time Modelnet is in-
stalled on the nodes of the testbed and it does not requires
additional access rights. All other communication details
are dealt with by SPLAY itself: no modification is needed
to the application code.

Figure 9 presents the delay distribution for a deploy-
ment of 1,000 nodes on PlanetLab, on ModelNet, and in
a mixed deployment over both testbeds at the same time
(i.e., 500 nodes on each). We notice that the delays of the
mixed deployment are distributed between the delays of
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Figure 9: Pastry on PlanetLab, ModelNet, and both.

PlanetLab and the higher delays of our ModelNet cluster.
The “steps” on the ModelNet cumulative delays repre-
sentation are a result of routes of increasing number of
hops (both in Pastry and in the emulated topology), and
the fixed delays for ModelNet links.

5.5 Using Churn Management

This section evaluates the use of the churn management
module, both using traces and synthetic descriptions. Us-
ing churn is as simple as launching a regular SPLAY ap-
plication with a trace file as extra argument. SPLAY pro-
vides a set of tools to generate and process trace files.
One can, for instance, speed-up a trace, increase the churn
amplitude whilst keeping its statistical properties, or gen-
erate a trace from a synthetic description.
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Figure 10: Using churn management to reproduce massive
churn conditions for the SPLAY Pastry implementation.

Figure 10 presents a typical experiment of a massive
failure using the synthetic description. We ran Pastry on
our local cluster with 1,500 nodes and, after 5 minutes,
triggered a sudden failure of half of the network (750
nodes). This models, for example, the disconnection of a
inter-continental link or a WAN link between two corpo-
rate LANs. We observe that the number of failed lookups
reaches almost 50% after the massive failure due to rout-
ing table entries referring to unreachable nodes. Pastry
recovers all its routing capabilities in about 5 minutes
and we can observe that delays actually decrease after
the failure because the population has shrunk (delays are
shown for successful routes only). While this scenario
is amongst the simplest ones, churn descriptions allow
users to experiment with much more complex scenarios,
as discussed in Section 3.2.

Our second experiment is representative of a complex
test scenario that would usually involve much engineer-
ing, testing and post-processing. We use the churn trace
observed in the Overnet file sharing peer-to-peer sys-
tem [12]. We want to observe the behavior of Pastry,

deployed on PlanetLab, when facing churn rates that are
much beyond the natural churn rates suffered in Planet-
Lab. As we want increasing levels of Churn, we simply
“speed-up” the trace, that is, with a speed-up factor of 2x,
5x or 10, a minute in the original trace is mapped to 30,
12 or 6 seconds respectively. Figure 11 presents both the
churn description and the evolution of delays and failure
rates, for increasing levels of churn. The churn descrip-
tion shows the population of nodes and the number of
joins/leaves as a function of time, and performance ob-
servations plot the evolution of the delay distribution as
a function of time. We observe that (1) Pastry handles
churn pretty well as we do not observe a significant fail-
ure rate when as much as 14% of the nodes are changing
state within a single minute; (2) running this experiment
is neither more complex nor longer than on a single clus-
ter without churn, as we did for Figure 7(a). Based on
our own experience, we estimate that it takes at least one
order of magnitude less human efforts to conduct this ex-
periment using SPLAY than with any other deployment
tools. We strongly believe that the availability of tools
such as SPLAY will encourage the community to further
test and deploy their protocols under adverse conditions,
and to compare systems using published churn models.

5.6 Deployment Performance

This section presents an evaluation of the deployment
time of an application on an adversarial testbed, Planet-
Lab. This further conveys our position from Section 3.1
that one needs to initially select a larger set of nodes than
requested to ensure that one can rely on reasonably re-
sponsive nodes for deploying the application. Tradition-
ally, such a selection process is done by hand, or using
simple heuristics based on the load or response time of
the nodes. SPLAY relieves the need for the user to pro-
ceed with this selection. Figure 12 presents the deploy-
ment time for the Pastry application on PlanetLab. We
vary the number of additionally probed daemons from
10% to 100% of the requested nodes. We observe that
a larger set results in lower delays for deploying an appli-
cation (hence, presumably, lower delays for subsequent
application communications). Nonetheless, the selection
of a reasonably large superset for a proper selection of
peers is a tradeoff between deployment delay and redun-
dant messages sent over the network. Based on experi-
ments, we use by default an initial superset of 125% of
requested nodes.

5.7 Resource-intensive Experiments

Our two last experimental demonstrations deal with
resource-intensive applications, both for short-term and
long-term runs. They further conveys SPLAY’s ability to
run in high performance settings and production environ-
ments, as well as demonstrating that the obtained perfor-
mance is similar to the one achieved with a dedicated
implementation (particularly from the network point of
view). We run the following two experiments: (1) the
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Figure 12: Deployment times of Pastry for SPLAY, as a func-
tion of (1) the number of nodes requested and (2) the size of the
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evaluation of a cooperative data distribution algorithm
based on parallel trees using both SPLAY and a native (C)
implementation on ModelNet and (2) a distributed coop-
erative Web cache for HTTP accesses, which has been
running for several weeks under a constant and signifi-
cant load.
Dissemination using trees. This experiment compares
two versions of a simple cooperative protocol [13] based
on parallel n-ary trees written with SPLAY and in C. We
create n = 2 distinct trees in the same manner as Split-
Stream [14] does: each of the 63 nodes is an inner mem-
ber in one tree and a leaf in the other. The data to be trans-
mitted is split into blocks, which are propagated along
one of the 2 trees according to a round-robin policy. This
experiment allows us to observe how SPLAY compares
against a native application, CRCP, written in C [6]. Us-
ing a tree for this comparison bears the advantage of high-
lighting the additional delays and overheads of the plat-
form and its network libraries (such as the sandboxing
of network operations). These overheads accumulate at
each level of the tree, from the root to the leaves.

Tests were run in a ModelNet testbed configured with
a symmetric bandwidth of 1 Mbps for each node. Results
are shown in Figure 13 for binary trees, a 24 MB file, and
different block sizes (16 KB, 128 KB, 512 KB). We ob-
serve that both implementations produce similar results,
which tends to demonstrate that the overhead of SPLAY’s
language and libraries is negligible. Differences in shape
are due to CRCP nodes sending chunks sequentially to
their children, while SPLAY nodes send chunks in paral-
lel. In our settings (i.e., homogeneous bandwidth), this
should not change the completion time of the last peer as
links are saturated at all times.

70 [ SPLAY trees
60 =

50 :
40
30
20

10

CRCP trees

128 KB [ 512KB S

Completions

220 230 240 250 260 270
Time (seconds)

Figure 13: File distribution using trees.

Long-term experiment: cooperative Web cache. Our
last experiment presents the performance over time of a
cooperative Web cache built using SPLAY following the
same base design as Squirrel [21]. This experiment high-
lights the ability of SPLAY to support long-run applica-
tions under constant load. The cache uses our Pastry DHT
implementation deployed in a cluster, with 100 nodes
that proxy requests and store remote Web resources for
speeding up subsequent accesses. For this experiment,
we limit the number of entries stored by each nodes to
100. Cached resources are evicted according to an LRU
policy or when they are older than 120 seconds. The co-
operative Web cache has been run for three weeks. Fig-
ure 14 presents the evolution of HTTP requests delay dis-
tribution for a period of 100 hours along with the cache
hit ratio. We injected a continuous stream of 100 requests
per second extracted from real Web access traces [7] cor-
responding to 1.7 million hits to 42,000 different URLs.
We observe a steady cache hit ratio of 77.6%. The experi-
enced delays distribution has remained stable throughout
the whole run of the application. Most accesses (75th per-
centile) are cached and served in less than 25 to 100 ms,
compared to non-cached accesses that require 1 to 2 sec-
onds on average.

6 Conclusion

SPLAY is an infrastructure that aims at simplifying the
development, deployment and evaluation of large-scale
distributed applications. It incorporates several novel fea-
tures not found in existing tools and testbeds. SPLAY
applications are specified using in a high-level, efficient
scripting language very close to pseudo-code commonly
used by researchers in their publications. They execute
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in a sandboxed environment and can thus be readily de-
ployed on non-dedicated hosts. SPLAY also includes a
comprehensive set of shared libraries tailored for the de-
velopment of distributed protocols. Application specifi-
cations are based on an event-driven model and are ex-
tremely concise.

SPLAY can seamlessly deploy applications in real (e.g.,
PlanetLab) or emulated (e.g., ModelNet) networks, as
well as mixed environments. An original feature of
SPLAY is its ability to inject churn in the system using
a trace or a synthetic description to test applications in
the most realistic conditions. Our thorough evaluation of
SPLAY demonstrates that it allows developers to easily
express complex systems in a concise yet readable man-
ner, scales remarkably well thanks to its low footprint,
exhibits very good performance in various deployment
scenarios, and compares favorably against native appli-
cations in our experiments. SPLAY is publicly available
from http://www.splay—-project.orgq.
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