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A b s t r a c t 
We address the problem of knowledge acquisi­
t ion for alarm correlation in a complex dynamic 
system like a telecommunications network. To 
reduce the amount of informat ion coming from 
telecommunications equipment, one needs to 
preprocess the alarm stream and we propose 
here a way to acquire some knowledge to do 
that. The key idea is that only the frequent 
alarm sets are relevant for reducing the infor­
mat ion stream: we aggregate frequent relevant 
information and suppress frequent noisy infor­
mat ion. We propose algorithms for analysing 
alarm logs: first stage is to discover frequently 
occurring temporally-constrained alarm sets 
(called chronicles) and second stage is to filter 
them according to their interdependency level. 
We also show experimental results w i th an ac­
tual telecommunications A T M network. 
A r e a s : knowledge acquisit ion, discovery, tem­
poral reasoning, applications, monitor ing. 

1 I n t r o d u c t i o n 
Telecommunications networks are growing in size and 
complexity, which means that a bigger and bigger vol­
ume of notifications needs to be handled by the man­
agement system. Most of this informat ion is produced 
spontaneously by equipment (e.g., status change and 
dysfunction detection) and this message flow must be 
preprocessed to make effective management possible. 

Fi l ters based on a per-notif ication basis fai l to perform 
an adequate informat ion preprocessing required by hu­
man operators or by management application software, 
which are not able to process such amount of events. 
A preprocessing stage must decrease this informat ion 
stream by suppressing superfluous notifications and/or 
by aggregating relevant ones. 

Some papers deal w i t h different approaches and pro-
pose more or less complex intell igent filtering: one can 
use some efficient rule-based languages (like in [Moller et 
o/., 1995]), and/or object-based techniques like ECXper t 
(Event Correlation eXpert) which builds alarm correla­
t ion trees according to some handwri t ten rules [Nygate, 

1995]. More specific techniques are also studied to cap­
ture t ime constraints between alarms [Dousson et a/., 
1993; Jakobson and Weissman, 1995]. 

In any case, the problem of expertise acquisition re­
mains the same: how to feed the filtering system? Which 
aggregation rules are relevant? Since t ime informat ion is 
apropos for the telecommunications alarm propagation, 
we also have to be able to deal w i th numerical t ime con­
straints. One way for such a knowledge acquisition is 
model-based approaches like [Bibas et al., 1995] or [La-
borie and Kr iv ine, 1997], which use models to bu i ld a 
simulator for generating relevant faul ty scenarios. 

Our approach is more akin to data min ing techniques: 
it is based on a frequency analysis of actual alarm logs 
of the supervised system (the telecommunications net­
work) to discover some frequent chronicles. The frequent 
chronicle approach is relevant to reach the a im of reduc­
ing the alarm stream: if a chronicle corresponds to a 
dysfunction, we aggregate the set of alarms for the hu­
man operator and if not, we only hide the corresponding 
alarms. At the moment, we do not use any extra knowl­
edge, so the rule qualif ication (aggregation or suppres­
sion) must be performed by an expert. 

The original idea stands in [Manni la et a/., 1995] but 
their work focuses only on two types of chronicles (which 
are called episodes): the parallel ones (alarms are not 
ordered) and the serial ones (alarms are completely or­
dered). Some extensions for a more complex chronicle 
structure are proposed (but not tested) by combining se­
r ia l and parallel chronicles. Moreover, only a user given 
upper bound of chronicle durat ion was allowed to be a 
t ime constraint. We extend our frequency analysis w i t h 
a t ime representation, which is able to deal w i t h numer­
ical t ime constraints. 

We present in this paper a system (called FACE - Fre­
quency Analyser for Chronicle Extract ion) tha t enables 
an expert to process some powerful analyses of alarm logs 
and to identify some recurrent phenomena. In Section 2, 
we expose some definitions for later use. Section 3 de­
tails the first stage of our log analyser, where frequently 
occurring chronicles in alarm logs are discovered; Sec­
t ion 4 corresponds to the second stage where a graph of 
dependencies between chronicles is established. Then in 
Section 5, before concluding, we show some results about 
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an experiment w i t h an actual A T M network. 

2 Representa t ion and De f in i t i ons 
2.1 T ime 
We based our alarm correlation system on CRS, a Chron­
icle Recognition System similar to IxTeT 1 , described in 
[Dousson, 1996], because of its real-time capabilities to 
deal w i th numerical t ime constraints. 

For complexity reasons, this system relies on t ime-
points as elementary primit ives and considers the t ime 
as a l inearly ordered set of discrete events. A t ime 
constraint between two time-points t\ and t2 is repre­
sented by an interval, which corresponds to 
the lower and upper bounds on the temporal distance 
f rom t1 to t2. We also define a t ime constraint graph 
as a set of t ime-points w i th t ime constraints between 
them (constraint between and is an interval de­
noted by We define a part ia l order {tighter 
than, denoted by among constraint graphs as follows: 

A constraint graph may have many equivalent rep-
resentations. In particular, there is a unique equiva­
lent constraint graph, which is minimal (w i th respect 
to and its computat ion (and its consistency check) 
is ensured by the well-known path consistency Floyd-
WarshaWs algori thm wi th the complexity of 0(n3) 
[Dechter et a/., 1991]. We do not allow disjunctive con­
straints since this problem becomes NP-hard. 

In the following sections, we systematically apply this 
algor i thm, and so, we always deal w i th the minimal t ime 
constraint graph. 

2.2 A l a r m 
A l a r m : an alarm is a pair (A,t) where A is the alarm 

type and t is the t ime instant (i.e., occurrence date) 
of the alarm. 

A l a r m o c c u r r e n c e : an alarm occurrence is a t ime-
stamped alarm (e.g., (A, 4)). 

A l a r m l o g : an alarm log is a time-ordered list of 
alarm occurrences. For example, (A, 1 ) ( B 3 , 3 ) ( J 4 , 4 ) 
(C ,4 ) (A ,7 ) (B ,8 ) (C ,9 ) (B ,10 ) (B ,12 ) . 

Due to t ime-point primit ives, an alarm has no dura­
t ion. If we need some, we can introduce two alarm types 
corresponding to the beginning and the end of an alarm. 
For instance, in the telecommunications management, 
one usually uses a when the alarm Loss Of 
Signal appears, and a when it disappears. 

We also suppose that alarms are correctly t ime-
stamped in logs (which is often the case). The message 
propagation delay in a network must only be taken into 
account dur ing the on-line recognition stage and this fea­
ture is actually performed by CRS. 

l The main differences between them are the heuristics 
used during the recognition because CRS is specially devel­
oped for telecommunications networks, but it does not matter 
here because we use it as a black box. 

2.3 Chronicle Mode l and Instance 
C h r o n i c l e m o d e l : a chronicle model C is a pair (S, T) 

where S is a set of alarms and is a constraint 
graph of their instants. We also denote a chron­
icle w i th N alarms (N is called the size of  

For example, Figure 1 shows a breakdown l ink chronicle, 
where LOS stands for Loss Of Signal and LOF stands 
for Loss Of Frame. 

U n c o n s t r a i n e d ch ron i c l e m o d e l : an unconstrained 
chronicle model (denoted by (S, •)) is a chronicle 
model w i t h no t ime constraint and no order be­
tween alarms. We also use alarm types for the 
simplif ied notat ion of an unconstrained chronicle 
model as in the following example: ABB stands 
for ( ( A , t 1 ) , ( B , t 2 ) , ( B , t 3 ) , . ) 2 . 

C h r o n i c l e i ns tance : a chronicle instance c of a chron­
icle model C is a set of alarm occurrences which is 
consistent w i th the t ime constraints of C. For ex­
ample, { (A , 1 ) (B , 3)(A, 7)} is an instance of the left 
chronicle of Figure 2. 

S u b c h r o n i c l e i ns tance : an instance c is a subchron-
icle instance of an instance c' iff c is a subset of 
C' (e.g., { ( A , l ) ( C , 6 ) } is a subchronicle instance of 
{{A, 1 ) (B ,3 ) (C ,6 ) } but not of { ( A , 3 ) ( C , 6 ) } ) . 

S u b c h r o n i c l e m o d e l : a model C is a subchronicle 
model of C (denoted by C C) iff f rom any in­
stance of C, we can extract a chronicle instance of 
C (e.g., in Figure 2 the two right chronicle models 
are subchronicle models of the left one). This rela­
t ion defines a part ia l order on chronicle models. 

Figure 2: Chronicle and subchronicles models. 

S u p e r c h r o n i c l e : c (resp. C) is a superchronicle in ­
stance (resp. model) of c! (resp. C ) , which is de­
noted by c c' (resp. C (resp. C) is a 
subchronicle instance (resp. model) of c (resp. C). 

T h e o r e m 1 A chronicle model C = (5 , T) is a sub­
chronicle model of C = ( S ' , T ' ) iff S S' and  

For brevity, hereafter chronicle stands for chronicle 
model and instance stands for chronicle instance. 

!Of course, ABB is equivalent to BAB or BBA. 
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2.4 Instance Set and Frequency 
Given an alarm log and a recognition process, we de­
note the set of instances of C recognized in Of 
course, this set depends strongly on the strategy imple­
mented in the used recognition tool . 

For our algorithms, we only need that the strategy 
guarantees the following property: 

P r o p e r t y 2  

This property means that an alarm occurrence can't be­
long to two instances of the same chronicle model. 

For instance, w i th given in Section 2.2, the instance 
set of the unconstrained chronicle AB could be: 

• etc. 

F r e q u e n c y of ch ron i c l e : given an alarm log the 
frequency fq(C, of a chronicle C in is the car­
dinal of For example, w i th given in Sec­
t ion 2.2, the frequency of the unconstrained chron­
icle AB is 3. 

F r e q u e n t ch ron i c l e : given a threshold C is fre­
quent in We suppose that 
the threshold is defined by the user. 

As our algorithms work w i th only one alarm log at a 
t ime, we now use the simplified notations and 
instead of respectively and  

3 Discover ing Frequent Chronic les 
This section presents algorithms to discover all the sets 
of frequent chronicles of size i (denoted by  

L e m m a 3 If a chronicle C is frequent in all its sub-
chronicles are also frequent in  

A chronicle won' t be frequent if one of its subchroni-
cles is infrequent. Otherwise, if all the subchronicles of 
are frequent, wi l l be a candidate for (i.e., may be 
frequent). For example, w i th the unconstrained chroni­
cle ABC, if one of its subchronicles A, B, C, AB, AC, BC 
is infrequent, ABC is also infrequent; otherwise, ABC 
may be frequent and is a candidate. In fact, if we know 
that AB is frequent, we also know that A and B are 
frequent. Thus we only need to check the frequency of 
AB, AC, BC (chronicles of size i - 1). We denote the 
set of candidate chronicles for  

So the intui t ive solution to compute is to generate 
all the possible chronicles of size i from one of its 
frequent subchronicle of size i - 1 (if AB is infrequent, 
we do not need to generate and 
then to check its frequency. 

Based on these analyses, our main algori thm builds i t -
eratively the exhaustive set of all frequent chronicles (see 
Figure 3). It starts by computing which corresponds 

to the set of al l the frequent alarms in At an itera­
t ion i, i t f irst computes the set f rom (function 
generateCandidate). It then calculates the frequency of 
each candidate and keeps only the frequent ones in 
I ts main loop ends at the i terat ion where there is no 
frequent chronicle of size  

Figure 3: Main algori thm 

The following sections only give algorithms for the 
chronicle generation stage because we use CRS to cal­
culate the frequency: chronicles are modeled into CRS, 
which receives as alarm input stream and then the 
number of times of recognition performed by CRS for 
each chronicle gives us the frequency of the chronicle. 

3.1 Candidate Generation 
This section presents the algorithms to compute from 

There are two subtasks to bui ld a candidate com­
put ing a set of i alarms occurring frequently together 
(i.e., a frequent unconstrained chronicle) and establish­
ing the t ime constraints between these alarms. There­
fore, in order to compute we first compute the set 
of the candidate unconstrained chronicles of size that 
may be frequent. The set of frequent unconstrained 
chronicles of size is then computed f rom Eventu­
ally, we establish t ime constraints between alarms of 
to generate the final candidates of (see Figure 4). 

Figure 4: Candidate generation 

The frequency of unconstrained chronicles is easily 
computed by using the following lemma: 

L e m m a 4 With an unconstrained chronicle C we have: 

, where. N(Ai) is the number 

of alarms (of C) whose type is Ai. 

3Here, [r] stands for the greatest integer less than or equal 
to a real number r. 
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For example, w i th the alarm log given in Sec­
t ion 2.2, the frequency of the unconstrained AAB is: 

Uncons t ra ined Cand ida te Genera t ion 
First, is used to construct the set of the un­
constrained chronicles corresponding to the chronicles of 

(obviously, We then compute the set 
from T. Lemma 3 enables us to suppress any chron­

icle including an infrequent subchronicle (see Figure 5). 

Figure 5: Unconstrained candidate generation 

For example, w i th the alarm log given in Section 2.2, 
= 2 and i = 3, we have T = {AB,AC,BC,BB} 

and thus, — {A, B,C}. By adding to AB each ele­
ment of one by one, we generate the three candidates 
AAB, ABB, ABC for but AAB is suppressed be­
cause one of its subchronicles, A A, is infrequent. We 
process similarly for AC, BC, BB and finally obtain 

{ABB, ABC, BBC). 
W i t h this exhaustive generation, one chronicle may be 

generated many times from those of T before checking 
its candidature for (e.g., BBC is generated twice, 
from BB and from BC). To avoid this redundancy and 
also to reduce the number of generated chronicles, our 
optimized algori thm orders completely the alarm types 
of (e.g. in lexical order) and only adds to a chronicle 
(5, •) of r an alarm whose type is greater than or equals 
to the greatest alarm type of S (see example in Figure 6). 
It can be proved that this opt imizat ion reduces in half 
the number of chronicles for which one needs checking 
the candidature for  

E s t a b l i s h i n g T i m e C o n s t r a i n t s 
Once is computed, the t ime constraints between the 
alarms of its chronicles are established by using Theo-

r exhaustive generation optimized generation 
AD 
AC 
BB 
BC 

AAB, ABB, ABC 
AAC,ABC,ACC 

ABB, BBB, BBC 
ABC, BBC, BCC 

ABB, ABC 
ACC 

BBB, BBC 
BCC 

Figure 6: Exhaustive vs. optimized generation for 
(The bold chronicles are the candidates in  

rem 1. The idea is that the t ime constraints between 
two alarms in the chronicles of are deduced from the 
t ime constraints between these alarms in the chronicles 
of (see Figure 7). 

Figure 7: Computing from and  

For example, suppose that in we have = 
[2,5], = [1,1], = [1,5], and 
the unconstrained chronicle ABC The con­
straint graph constructed from {A,B,C} w i th 
these constraints is consistent (see Figure 8), so 

is a candidate in  

Figure 8: Establishing t ime constraints. 

3.2 Discover ing Chronicles of Size 2 
The t ime constraints for the alarms are originally es­
tablished at this stage and then are used to correlate 
alarms in the chronicles of size greater than 2. Using the 
same strategy as described above, our algori thm com­
putes f irst ly then establishes the t ime constraints 
between alarms of the chronicles of  

Based on the distinct instances of a frequent chronicle 
AB in the alarm log, we establish the t ime constraint be­
tween A and B. A constraint can be accepted as 
the t ime constraint between A and B if all the instances 
of respect But if all the instances of 
are used, some noises may be taken into account. In or­
der to avoid noises, one should use an instance threshold 

instances 
of TAB should be considered. 

Among these acceptable t ime constraints, one should 
use some criteria to select the good ones for A and B. In 
order to find only t ight constraints between alarms, we 
select only the constraints so that their duration and the 
distance between A and B are as small as possible since 
alarm effects are rapidly propagated in telecommunica­
tions network. More concretely: 

• From the acceptable constraints, select so 
that is the smallest (criterion of the t ight­
est constraint). 
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• From the selected constraints, select so that 
is the smallest (criterion of the 

shortest distance). 
Searching good constraints (at most two) can be done 

using the algor i thm A*. These constraints can be consid­
ered as the disjunctive constraint between A and B. For 
example, w i th the instance threshold = 1 and the 
alarm log = ( 4 , 1 ) ( B , 3)(A, 4 ) (B , 5 ) (4 , 7 ) (B , 8 ) ( A 10), 
it is easy to find that [ - 2 , - 1 ] and [1,2] are two good 
t ime constraints between A and B. 

In fact, CRS does not accept disjunctive constraints, 
therefore such ones wi l l be unified to obtain the con­
straint for CRS. In the above example, the constraint 

w i l l be [ - 2 , 2] instead of - 2 , - 1 ] [1 , 2] for 
CRS. Another possibility could be to define two chron­
icles AB in CRS, one w i th [ - 2 , - 1 ] and another w i th 
[1.2]. 

3.3 Discovering Frequent Chronicles w i t h 
Chronicles Known by Experts 

If we have some expertise, we can use it to improve 
the discovery process: al l known chronicles of size i are 
added to Moreover, in order to determine whether 
the chronicle C is frequent, we use Theorem 1 to check 
if C is a subchronicle of one of the known chronicles. If 
it is, we already know that C is frequent. Otherwise, we 
have to calculate the frequency of C. Taking this remark 
into account, the number of chronicles to calculate the 
frequency may be much reduced. 

3 .4 C o m p l e x i t y 
At an i terat ion i, the global complexity of our algorithms 
is the sum of the following complexities: 
U n c o n s t r a i n e d ch ron i c l e g e n e r a t i o n (Figure 5): 

for each unconstrained chronicle (S' , • ) of size i, 
checking if one of its subchronicles of size 
belongs to T can be done in t ime w i th 
binary search; because has i unconstrained 
subchronicles of size i — 1 , checking the candidature 
o f f o r c a n be done i n t ime  
The number of unconstrained chronicles to check 
the candidature for is In fact, can 
be overvalued to so this complexity can be 
overvalued to which is 
a l i t t le better than one of [Mannila et al., 1995]. 

U n c o n s t r a i n e d ch ron i c l es f r e q u e n c y c a l c u l a t i o n : 
it requires Q(i) t ime for a unconstrained candidate 
of size i (Lemma 4); so this complexity is  

E s t a b l i s h i n g t i m e c o n s t r a i n t s (Figure 7): for each 
unconstrained chronicle ( 5 , ) of establishing 
the t ime constraint for one of its pairs of 
alarms can be done in t ime so, constructing 
a constraint graph corresponding to (5, •) requires 

t ime. In addit ion to this complexity, 
checking the consistency of a constraint graph of i 
nodes takes t ime. Therefore this complexity 

C o n s t r a i n e d c h r o n i c l e f r e q u e n c y c a l c u l a t i o n : 
[Dousson, 1996] had shown that : for a chronicle 
of size i, the propagation when one of its alarms 
arrives requires t ime; so we have a complexity 
of for the chronicle; as the internal mechanism 
of CRS generates on average i instances for one 
recognized (and i2 in the worst case), the average 
complexity of the frequency calculation is 
(and in the worst case). So this complexity 
is (and in the worst case). 

4 Dependency F i l t e r i n g 
The number of frequent chronicles is always great. Thus, 
once these chronicles are discovered, one should filter 
them to find the relevant ones. Wha t should be the cri­
teria of relevance? Recall that our goal is to discover ex­
pertise for monitor ing, so the discovered chronicles have 
to be able to identify phenomena produced during the 
functioning of the system. The question here is: does 
a chronicle signify itself a phenomenon or is it always 
included in a more complex one? For instance, is AB a 
phenomenon or does AB always come w i th other alarms 
(and so, the relevant chronicles may be ABC or ABB)? 

We base the dependency relationship between a chron­
icle and one of its subchronicles on the alarms of the 
subchronicle that are not included in any instance of the 
superchronicle. 

We define the independent instance set between two 
chronicles C and C as follows: 

And so, the independent frequency is defined 
as the number of elements of  

In term of dependency level, one can say that the 
chronicle C depends completely on all its subchronicles, 
i.e., the phenomenon corresponding to C included the 
phenomena corresponding to al l its subchronicles. If 
there is C so that is high, one can say that 
the influence of C is not only showed in C, but also out­
side C. Therefore, if is a relevant chronicle, C is also 
relevant. On the other hand, if is low, one 
can say that outside C, the influence of C is not remark-
able. In other words, C should only be considered as an 
excerpt of C'. 

T h e o r e m 5  

Proof: This is due to the fact that for any instance 
of is superchronicle of C), there is at least one 
dependent instance c of C   

C o r o l l a r y 6 The following recursive formula gives an 
upper bound of fq*  
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Proof: Recursively: suppose that the formula is true for 
any superchronicle C, Theorem 5 gives it for C. D 

Let us suppose that the recognition process is con-
tructed so that the instances of chronicles are recognized 
as soon as possible (first-coming instances). Namely, the 
process guarantees the fol lowing property (CRS does): 

P r o p e r t y 7 For any chronicle its instance set is 
totally ordered by the relation ( before) between two 
instances of C, where is defined as follows: 

For example, w i t h the alarm log given in Sec­
t ion 2.2, the instance set is the following: 

W i t h our algorithms, we can prove the following the­
orem: 

Thanks to Theorem 8, we can easily calculate the in­
dependent frequencies for chronicles w i t h distinct alarm 
types. For the other k ind of chronicles4, we can cal­
culate their independent frequencies by exhaustive al­
gor i thm (i.e., using the definit ion) and/or calculate the 
upper bounds for estimating purposes. 

Figure 9: Calculation of (wi th fqmin = 2). 

O u t p u t o f t h e F i l t e r i n g Process 
Based on the above analyses, the output of the filtering 
process is a graph G representing the dependency rela­
tionship between the frequent chronicles. There wi l l be 
a l ink from C to C if and = 0. 5 

A chronicle C is considered as independent if its in­
dependent frequencies against all i ts independent super-
chronicles greater than zero, i.e., C has no links w i th 
its independent superchronicles in G. A l l the chronicles 
that have no superchronicle are independent. 

Figure 10 shows the dependency graph, which is com­
puted from the alarm log given in Section 2.2 w i th 

= 2. We exhibit here four independent chronicles 
A B B , AB, ABC and BBC (to simpli fy the figure, the 
corresponding constraint graphs are not shown). 

4 Fortunately, first experimental results show that this 
kind of chronicles is relatively rare. 

5One can define a dependency threshold for filtering. 

Figure 10: Dependency graph of the frequent chronicles. 

5 Exper iment and Results 

The first experiment of our approach was w i t h the data 
from the French packet switching telecommunications 
network. The input data was a log of 2900 alarms of 
36 different types and corresponded to a durat ion of 20 
hours. One run of our algorithms (i.e., for one given 
value of fqmin) took about 2 minutes, and many runs ex­
hibited a dozen of independent relevant chronicles (due 
to the size of the input, frequent phenomena are rela­
t ively rare). Since the network is well known, this was 
more a val idation experiment than an actual knowledge 
acquisition. In spite of that, one of the discovered chron­
icles was unknown but relevant to experts. Moreover, it 
was a non-tr iv ial chronicle in the sense that it was out 
of usual monitor ing knowledge: this chronicle showed 
the influence of a non-telecom unit - a secondary power 
supply failure - w i th an alarm indicating the too high 
temperature on an equipment (the reason is that the 
air c o n d i t i o n i n g system was out of order since it was 
plugged on the secondary power supply). 

Figure 11: Experiment w i th A T M network data. 

The second application is related to the first exper­
imental national A T M (Asynchronous Transfer Mode) 
network. As this network is more recent, the challenge 
for our algorithms is to help efficiently experts w i th mon­
i tor ing knowledge acquisition. The amount of data is 
more significant since we have a one month log w i t h 
about forty thousand alarms dispatched through about 
3800 different types. For this application, an alarm type 
consists of the actual alarm type and its localisation: 
for instance, if telecommunications equipment are able 
to emit a LOS (Loss of Signal), we define a LOS-Lyon 
for the Lyon switch, a LOSJParis for the Paris switch 
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and soon . Figure 11 shows some experimental results. 
Moreover, we can notice that we have very few chronicles 
containing twice the same alarm type or more; hence, 
Theorem 8 (Section 4) gives us the exact independent 
frequency. 

At this stage, we already know that some of them 
are relevant and some others must be filtered dur­
ing on-line monitor ing. Figure 1 (at the beginning 
of the paper) shows such a discovered chronicle: the 
first group (LOFclear, LOSclear, LinkUp) corresponds to 
the connection re-establishment and the second group 
(LOFactive, LOSactive, Link Down) indicates a connec­
t ion breakdown; this chronicle signifies an unstable con­
nection l ink, which fails in the 10 seconds fol lowing the 
re-establishment; this is a particular chronicle of the net­
work and it is unpredictable according to the rules of rec­
ommendations of telecommunications management since 
it is a recurrent ma l func t i on ing phenomenon. However, 
to improve the results, we need more investigations w i th 
telecommunications monitor ing experts. 

6 Conclusion 
We present a chronicle discovery process that is very 
helpful for experts to discover moni tor ing knowledge 
from alarm logs. It is based on the key idea that a chron­
icle is frequent only if its subchronicles are frequent (like 
the work of [Manni la et a/., 1995] but the chronicle for­
malism is more expressive than their episode-rule struc­
ture). Our process is also able to take into account and 
to establish numerical t ime constraints between alarms 
since this informat ion could be discrepant for the fault 
detection. 

The use of the same chronicle recognition system and 
the same chronicle model guarantees that semantics of 
recognition remains the same during the off-line (knowl­
edge acquisition) and on-line processing (monitor ing). 

We also propose a method for sorting the discovered 
chronicles and exhibit ing the most relevant ones. The 
main advantage is to focus the attention of an expert 
on few (about one third) discovered chronicles to under­
stand and to be categorized for the moni tor ing process. 

The first experiments show that our algorithms are 
able to deal w i th an amount of data compatible w i th 
the requirement of a discovery process and the prel imi­
nary results are quite promising since many discovered 
chronicles could be explained by the corresponding I T U 7 

recommendations. We wi l l interact w i t h equipment ex­
perts to validate more chronicles but we already know 
that this is a good way to acquire knowledge for mon­
i tor ing a telecommunications network (like A T M ) . We 
noticed that the approach also exhibits some non-tr iv ial 
scenarios, which are very rarely modelled by experts. 

6This is a limitation of our algorithms: we only discover 
chronicles that correspond to the phenomena repeating on 
the same equipment. In future work, we wil l introduce vari­
ables in chronicles to capture similar phenomena occuring on 
different places in the network. 

7International Telecommunication Union 

Future work w i l l focus on addit ion of variables in dis­
covered chronicles and on introduct ion of some knowl­
edge in the telecommunications domain to ease the 
chronicle generation stage. Experiments w i th the A T M 
network w i l l also be pursued and another test on a SDH 
(Synchronous Dig i ta l Hierarchy) network is planned. 
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