Amit Kalgutkar

Amit Kalgutkar

Cambridge, Massachusetts, United States
2K followers 500+ connections

About

>20 years experience as a "Drug Hunter" with over a dozen clinical candidates…

Activity

Join now to see all activity

Experience

  • Pfizer Graphic

    Pfizer

    Cambridge, Massachusetts, United States

  • -

    Kingston, Rhode Island, United States

  • -

    Cambridge, Massachusetts

  • -

    Groton, Connecticut, United States

  • -

    Groton, Connecticut, United States

  • -

    Groton, Connecticut, United States

  • -

Education

Publications

  • Disposition of PF-07321332 (Nirmatrelvir), an Orally Bioavailable Inhibitor of SARS-CoV-2 3CL Protease, across Animals and Humans

    Drug Metabolism and Disposition

    The SARS-CoV-2 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (PaxlovidTM), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of COVID-19 in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies are described, herein. Plasma clearance was moderate in rats (27.2 ml/min/kg) and monkeys (17.1 ml/min/kg), resulting in…

    The SARS-CoV-2 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (PaxlovidTM), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of COVID-19 in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies are described, herein. Plasma clearance was moderate in rats (27.2 ml/min/kg) and monkeys (17.1 ml/min/kg), resulting in half-lives of 5.1 and 0.8 h, respectively. The corresponding oral bioavailability was moderate in rats (34-50%) and low in monkeys (8.5%), primarily due to oxidative metabolism along the gastrointestinal tract in this species. Nirmatrelvir demonstrated moderate plasma protein binding in rat, monkey, and human with mean unbound fractions ranging from 0.310-0.478. The metabolism of nirmatrelvir was qualitatively similar in liver microsomes and hepatocytes from rat, monkey, and human; prominent metabolites arose via cytochrome P450 (CYP) mediated oxidations on the P1 pyrrolidinone ring, P2 6,6-dimethyl-3-azabicyclo[3.1.0]hexane, and the tertiary-butyl group at the P3 position. Reaction phenotyping studies in human liver microsomes revealed that CYP3A4 was primarily responsible (fraction metabolized=0.99) for the oxidative metabolism of nirmatrelvir. Minor clearance mechanisms involving renal and biliary excretion of unchanged nirmatrelvir were also noted in animals, and in sandwich-cultured human hepatocytes. Nirmatrelvir was a reversible and time-dependent inhibitor as well as inducer of CYP3A activity in vitro. First-in-human pharmacokinetics studies have demonstrated a considerable boost in the oral systemic exposure of nirmatrelvir upon co-administration with the CYP3A4 inhibitor ritonavir, consistent with the predominant role of CYP3A4 in nirmatrelvir metabolism.

    Other authors
    See publication
  • An Oral SARS-CoV-2 Mpro Inhibitor Clinical Candidate for the Treatment of COVID-19

    Science

    The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2
    (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an
    important part of the healthcare response to countering the ongoing threat presented by COVID-19.
    Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2
    main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent…

    The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2
    (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an
    important part of the healthcare response to countering the ongoing threat presented by COVID-19.
    Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2
    main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target
    selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted
    SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell
    potency in a phase 1 clinical trial in healthy human participants.

    Other authors
    See publication
  • Future of Biotransformation Science in the Pharmaceutical Industry

    Drug Metabolism and Disposition

    Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the…

    Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them towards a rewarding career path. The ability of scientists with a background in biotransformation/organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small molecule or large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders and antibodies.

    Other authors
    See publication
  • Optimizing the Benefit/Risk of Acetyl-CoA Carboxylase Inhibitors through Liver Targeting

    Journal of Medicinal Chemistry

    Preclinical and clinical data suggest that acetyl-CoA carboxylase (ACC) inhibitors have the potential to rebalance disordered lipid metabolism, leading to improvements in nonalcoholic steatohepatitis (NASH). Consistent with these observations, first-in-human clinical trials with our ACC inhibitor PF-05175157 led to robust reduction of de novo lipogenesis (DNL), albeit with concomitant reductions in platelet count, which were attributed to the inhibition of fatty acid synthesis within bone…

    Preclinical and clinical data suggest that acetyl-CoA carboxylase (ACC) inhibitors have the potential to rebalance disordered lipid metabolism, leading to improvements in nonalcoholic steatohepatitis (NASH). Consistent with these observations, first-in-human clinical trials with our ACC inhibitor PF-05175157 led to robust reduction of de novo lipogenesis (DNL), albeit with concomitant reductions in platelet count, which were attributed to the inhibition of fatty acid synthesis within bone marrow. Herein, we describe the design, synthesis, and evaluation of carboxylic acid-based ACC inhibitors with organic anion transporting polypeptide (OATP) substrate properties, which facilitated selective distribution of the compounds at the therapeutic site of action (liver) relative to the periphery. These efforts led to the discovery of clinical candidate PF-05221304 (12), which selectively inhibits liver DNL in animals, while demonstrating considerable safety margins against platelet reduction in a nonhuman primate model.

    Other authors
    See publication
  • Designing Around Structural Alerts in Drug Discovery

    Journal of Medicinal Chemistry

    Cumulative research over several decades has implicated the involvement of reactive metabolites in many idiosyncratic adverse drug reactions (IADRs). Consequently, "avoidance" strategies have been inserted into drug discovery paradigms, which include the exclusion of structural alerts and possible termination of reactive metabolite-positive compounds. Several noteworthy examples where reactive metabolite-related liabilities have been resolved through structure-metabolism studies are presented…

    Cumulative research over several decades has implicated the involvement of reactive metabolites in many idiosyncratic adverse drug reactions (IADRs). Consequently, "avoidance" strategies have been inserted into drug discovery paradigms, which include the exclusion of structural alerts and possible termination of reactive metabolite-positive compounds. Several noteworthy examples where reactive metabolite-related liabilities have been resolved through structure-metabolism studies are presented herein. Considerable progress has also been made in addressing the limitations of the avoidance strategy and further refining the process of managing reactive metabolite issues in drug development. These efforts primarily stemmed from the observation that numerous drugs, which contain structural alerts and/or form reactive metabolites, are devoid of ADRs. The Perspective also dwells into an analysis of the structural alert/reactive metabolite concept with a discussion of risk mitigation tactics to support the progression of reactive metabolite-positive drug candidates.

    See publication
  • Effective Application of Metabolite Profiling in Drug Design and Discovery

    Journal of Medicinal Chemistry

    At one time, biotransformation was a descriptive activity in pharmaceutical development, viewed simply as structural elucidation of drug metabolites, completed only once compounds entered clinical development. Herein, we present our strategic approach using structural elucidation to enable chemistry design/SAR development. The approach considers four questions that often present themselves to medicinal chemists optimizing their compounds for candidate selection: (1) What are the important…

    At one time, biotransformation was a descriptive activity in pharmaceutical development, viewed simply as structural elucidation of drug metabolites, completed only once compounds entered clinical development. Herein, we present our strategic approach using structural elucidation to enable chemistry design/SAR development. The approach considers four questions that often present themselves to medicinal chemists optimizing their compounds for candidate selection: (1) What are the important clearance mechanisms that mediate the disposition of my molecule? (2) Can metabolic liabilities be modulated in a favorable way? (3) Does my compound undergo bioactivation to a reactive metabolite? (4) Do any of the metabolites possess activity, either on- or off-target? An additional question necessary to support compound development relates to metabolites in safety testing (MIST) and our approach also addresses this question. The value in structural elucidation is derived from its application to better design molecules, guide their clinical development, and underwrite patient safety.

    Other authors
    See publication
  • Is there enough evidence to classify cycloalkyl amine substituents as structural alerts?

    Biochemical Pharmacology

    Basic amine substituents provide several pharmacokinetic benefits relative to acidic and neutral functional groups, and have been extensively utilized as substituents of choice in drug design. On occasions, basic amines have been associated with off-target pharmacology via interactions with aminergic G-protein coupled receptors, ion-channels, kinases, etc. Structural features associated with the promiscuous nature of basic amines have been well-studied, and can be mitigated in a preclinical…

    Basic amine substituents provide several pharmacokinetic benefits relative to acidic and neutral functional groups, and have been extensively utilized as substituents of choice in drug design. On occasions, basic amines have been associated with off-target pharmacology via interactions with aminergic G-protein coupled receptors, ion-channels, kinases, etc. Structural features associated with the promiscuous nature of basic amines have been well-studied, and can be mitigated in a preclinical drug discovery environment. In addition to the undesirable secondary pharmacology, α-carbon oxidation of certain secondary or tertiary cycloalkyl amines can generate electrophilic iminium and aldehyde metabolites, potentially capable of covalent adduction to proteins or DNA. Consequently, cycloalkyl amines have been viewed as structural alerts (SAs), analogous to functional groups such as anilines, furans, thiophenes, etc., which are oxidized to reactive metabolites that generate immunogenic haptens by covalently binding to host proteins. Detailed survey of the literature, however, suggests that cases where preclinical or clinical toxicity has been explicitly linked to the metabolic activation of a cycloalkyl amine group are extremely rare. Moreover, there is a distinct possibility for the formation of electrophilic iminium/amino-aldehyde metabolites with numerous cycloalkyl amine-containing marketed drugs, since stable ring cleavage products have been characterized as metabolites in human mass balance studies. In the present work, a critical analysis of the evidence for and against the role of iminium ions/aldehydes as mediators of toxicity is discussed with a special emphasis on often time overlooked detoxication pathways of these reactive species to innocuous metabolites.

    Other authors
    See publication
  • 6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1 H-Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1, Relative to β-Estradiol

    Drug Metabolism and Disposition

    6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577) is a direct activator of the human β1-containing adenosine monophosphate-activated protein kinase (ΑMPK) isoforms. The clearance mechanism of PF-06409577 in animals and humans involves uridine diphosphoglucuronosyl transferase (UGT)-mediated glucuronidation to an acyl glucuronide metabolite of PF-06409577…

    6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577) is a direct activator of the human β1-containing adenosine monophosphate-activated protein kinase (ΑMPK) isoforms. The clearance mechanism of PF-06409577 in animals and humans involves uridine diphosphoglucuronosyl transferase (UGT)-mediated glucuronidation to an acyl glucuronide metabolite of PF-06409577 [(2S,3S,4S,5R,6S)-6-((6-chloro-5-(4-(1-hydroxycyclobutyl)phenyl)-1H-indole-3-carbonyl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (M1)], which retains selective activation of human β1-containing AMPK isoforms. This paper describes a detailed characterization of the human UGT isoform(s) responsible for glucuronidation of PF-06409577 to M1. Studies using a panel of 13 human recombinant UGT (hrUGT) enzymes indicated that PF-06409577 was converted to M1 in a highly selective fashion by UGT1A1, which was further verified in human liver microsomes treated with specific chemical inhibitors, and in different UGT1A1 expressers. Conversion of PF-06409577 to M1 by UGT1A1 occurred in a relatively selective fashion, compared with β-estradiol (ES), a conventional probe substrate of UGT1A1. The Michaelis-Menten constant (K M) and V max values describing the formation of M1 from PF-06409577 in hrUGT1A1 and microsomal preparations from human intestine, liver, and kidney ranged from 131 to 212 μM (K M) and 107-3834 pmol/min per milligram (V max) in the presence of 2% bovine serum albumin. Relative activity factors (RAF) were determined for UGT1A1 using PF-06409577 and ES to enable estimation of intrinsic clearance from various tissues. RAF values from PF-06409577 and ES were generally comparable with the exception of intestinal microsomes, where ES overestimated the RAF of UGT1A1 due to glucuronidation by intestinal UGT1A8 and UGT1A10. Our results suggest the potential utility of PF-06409477 as a selective probe UGT1A1 substrate for UGT studies in preclinical discovery/development.

    Other authors
    See publication
  • Acyl Glucuronide Metabolites of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1 H-indole-3-carboxylic Acid (PF-06409577) and Related Indole-3-carboxylic Acid Derivatives are Direct Activators of Adenosine Monophosphate-Activated Protein Kinase (AMPK)

    Journal of Medicinal Chemistry

    Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1β1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral…

    Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1β1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of β1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1β1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.

    Other authors
    See publication
  • Establishing Transcriptional Signatures to Differentiate PXR-, CAR-, and AhR-Mediated Regulation of Drug Metabolism and Transport Genes in Cryopreserved Human Hepatocytes

    Journal of Pharmacology and Experimental Therapeutics

    The potential for drug-drug interactions (DDIs) arising from transcriptional regulation of drug-disposition genes via activation of nuclear receptors (NRs), such as pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), remains largely unexplored, as highlighted in a recent guidance document from the European Medicines Agency. The goal of this research was to establish PXR-/CAR-/AhR-specific drug-metabolizing enzyme (DME) and transporter gene…

    The potential for drug-drug interactions (DDIs) arising from transcriptional regulation of drug-disposition genes via activation of nuclear receptors (NRs), such as pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), remains largely unexplored, as highlighted in a recent guidance document from the European Medicines Agency. The goal of this research was to establish PXR-/CAR-/AhR-specific drug-metabolizing enzyme (DME) and transporter gene expression signatures in sandwich-cultured cryopreserved human hepatocytes using selective activators of PXR (rifampin), CAR (CITCO), and AhR (omeprazole). Dose response for ligand-induced changes to 38 major human DMEs and critical hepatobiliary transporters were assessed using a custom gene expression array card. We identified novel differentially expressed drug-disposition genes for PXR (↑ABCB1/MDR1, CYP2C9, CYP2C19, and EPHX1, ↓ABCB11), CAR [↑sulfotransferase (SULT) 1E1, uridine glucuronosyl transferase (UGT) 2B4], and AhR (↑SLC10A1/NTCP, SLCO1B1/OATP1B1], and coregulated genes (CYP1A1, CYP2B6, CYP2C8, CYP3A4, UGT1A1, UGT1A4). Subsequently, DME gene expression signatures were generated for known CYP3A4 inducers PF-06282999 and pazopanib. The former produced an induction signature almost identical to that of rifampin, suggesting activation of the PXR pathway, whereas the latter produced an expression signature distinct from those of PXR, CAR, or AhR, suggesting involvement of an alternate pathway(s). These results demonstrate that involvement of PXR/CAR/AhR can be identified via expression changes of signature DME/transporter genes. Inclusion of such signature genes could serve to simultaneously identify potential inducers and inhibitors, and the NRs involved in the transcriptional regulation, thus providing a more holistic and mechanism-based assessment of DDI risk for DMEs and transporters beyond conventional cytochrome P450 isoforms.

    Other authors
    See publication
  • Examination of the Human Cytochrome P4503A4 Induction Potential of PF-06282999, an Irreversible Myeloperoxidase Inactivator: Integration of Preclinical, In Silico, and Biomarker Methodologies in the Prediction of the Clinical Outcome

    Drug Metabolism and Disposition

    The propensity for CYP3A4 induction by 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999), an irreversible inactivator of myeloperoxidase, was examined in the present study. Studies using human hepatocytes revealed moderate increases in CYP3A4 mRNA and midazolam-1'-hydroxylase activity in a PF-06282999 dose-dependent fashion. At the highest tested concentration of 300 μM, PF-06282999 caused maximal induction in CYP3A4 mRNA and enzyme activity…

    The propensity for CYP3A4 induction by 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999), an irreversible inactivator of myeloperoxidase, was examined in the present study. Studies using human hepatocytes revealed moderate increases in CYP3A4 mRNA and midazolam-1'-hydroxylase activity in a PF-06282999 dose-dependent fashion. At the highest tested concentration of 300 μM, PF-06282999 caused maximal induction in CYP3A4 mRNA and enzyme activity ranging from 56% to 86% and 47% t0 72%, respectively, of rifampicin response across the three hepatocyte donor pools. In a clinical drug-drug interaction (DDI) study, the mean midazolam Cmax and area under the curve (AUC) values following 14-day treatment with PF-06282999 decreased in a dose-dependent fashion with a maximum decrease in midazolam AUC0-inf and Cmax of ∼57.2% and 41.1% observed at the 500 mg twice daily dose. The moderate impact on midazolam pharmacokinetics at the 500 mg twice daily dose of PF-06282999 was also reflected in statistically significant changes in plasma 4β-hydroxycholesterol/cholesterol and urinary 6β-hydroxycortisol/cortisol ratios. Changes in plasma and urinary CYP3A4 biomarkers did not reach statistical significance at the 125 mg three times daily dose of PF-06282999, despite a modest decrease in midazolam systemic exposure. Predicted DDI magnitude based on the in vitro induction parameters and simulated pharmacokinetics of perpetrator (PF-06282999) and victim (midazolam) using the Simcyp (Simcyp Ltd., Sheffield, United Kingdom) population-based simulator were in reasonable agreement with the observed clinical data. Since the magnitude of the 4β-hydroxycholesterol or 6β-hydroxycortisol ratio change was generally smaller than the magnitude of the midazolam AUC change with PF-06282999, a pharmacokinetic interaction study with midazolam ultimately proved important for assessment of DDI via CYP3A4 induction.

    Other authors
  • Toxicological Implications of “Hard” Electrophiles Generated in Reactive Metabolite Trapping Screens

    Chemical Research in Toxicology (American Chemical Society)

    Soft electrophiles (e.g., epoxides, quinones, quinone-imines, quinone-methides, etc.) generated via the oxidative bioactivation of phenyl, phenolic, amino-, and alkylphenolic substituents can be trapped with nucleophiles of comparable softness (e.g., glutathione or cysteine) in reactive metabolite screens. In contrast, hard nucleophiles such as cyanide and amines are frequently utilized to trap hard electrophiles (e.g., iminiums and aldehydes) that result from the oxidative bioactivation of…

    Soft electrophiles (e.g., epoxides, quinones, quinone-imines, quinone-methides, etc.) generated via the oxidative bioactivation of phenyl, phenolic, amino-, and alkylphenolic substituents can be trapped with nucleophiles of comparable softness (e.g., glutathione or cysteine) in reactive metabolite screens. In contrast, hard nucleophiles such as cyanide and amines are frequently utilized to trap hard electrophiles (e.g., iminiums and aldehydes) that result from the oxidative bioactivation of cyclic (or acylic) amines and primary alcohols. In some instances, soft sulfydryl nucleophiles have also been utilized to trap aldehydes to yield cyclized thiazolidine adducts. Case studies where hard electrophiles are thought to be responsible for cytochrome P450 inactivation, genotoxicity, and/or target organ toxicity in animals have been presented. The association of hard electrophiles with immune-mediated idiosyncratic adverse drug reactions is less clear given the paucity of available examples and the fact that several marketed drugs containing cyclic amine motifs can generate hard electrophiles via α-carbon ring oxidation. This perspective examines available data associating toxicity with the formation of hard electrophilic intermediates from small molecule drugs/drug candidates. Pragmatic risk mitigation strategies around unwarranted idiosyncratic toxicity risks with drug candidates that generate hard electrophiles are also discussed against the backdrop of marketed agents that possess analogous cyclic amine framework.

  • Inhibition of Hepatobiliary Transport Activity by the Antibacterial Agent Fusidic Acid: Insights into Factors Contributing to Conjugated Hyperbilirubinemia/Cholestasis

    Chemical Research in Toxicology (American Chemical Society)

    Conjugated hyperbilirubinemia accompanied by cholestasis is a frequent side effect during chronic treatment with the antimicrobial agent fusidic acid. Previous studies from our laboratory, addressing mechanisms of musculoskeletal toxicity arising from coadministration of fusidic acid with statins, demonstrated the ability of fusidic acid to potently inhibit human organic anion transporting polypeptides OATP1B1 (IC50 = 1.6 μM) and OATP1B3 (IC50 = 2.5 μM), which are responsible for the…

    Conjugated hyperbilirubinemia accompanied by cholestasis is a frequent side effect during chronic treatment with the antimicrobial agent fusidic acid. Previous studies from our laboratory, addressing mechanisms of musculoskeletal toxicity arising from coadministration of fusidic acid with statins, demonstrated the ability of fusidic acid to potently inhibit human organic anion transporting polypeptides OATP1B1 (IC50 = 1.6 μM) and OATP1B3 (IC50 = 2.5 μM), which are responsible for the uptake-limited clearance of statins as well as bilirubin glucuronide conjugates. In the present work, inhibitory effects of fusidic acid were characterized against additional human hepatobiliary transporters [Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), and multidrug resistance-associated proteins MRP2 and MRP3] as well as uridine glucuronosyl transferase (UGT1A1), which mediate the disposition of bile acids and bilirubin (and its conjugated metabolites). Fusidic acid demonstrated concentration-dependent inhibition of human NTCP- and BSEP-mediated taurocholic acid transport with IC50 values of 44 and 3.8 μM, respectively. Inhibition of BSEP activity by fusidic acid was also consistent with the potent disruption of cellular biliary flux (AC50 = 11 μM) in the hepatocyte imaging assay technology assay, with minimal impact on other toxicity end points (e.g., cytotoxicity, mitochondrial membrane potential, reactive oxygen species generation, glutathione depletion, etc.). Fusidic acid also inhibited UGT1A1-catalyzed β-estradiol glucuronidation activity in human liver microsomes with an IC50 value of 16 μM. Fusidic acid did not demonstrate any significant inhibition of ATP-dependent LTC4 transport (IC50's > 300 μM) in human MRP2 or MRP3 vesicles.

    Other authors
  • Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of AMPK, for the Potential Treatment of Diabetic Nephropathy

    Journal of Medicinal Chemistry (American Chemical Society)

    AMPK is a protein kinase involved in maintaining energy homeostasis within cells. Based on human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7).

    Other authors
  • The Antimicrobial Agent Fusidic Acid Inhibits Organic Anion Transporting Polypeptide-Mediated Hepatic Clearance and May Potentiate Statin-Induced Myopathy.

    Drug Metabolism and Disposition

    Chronic treatment of methicillin-resistantStaphylococcus aureusstrains with the bacteriostatic agent fusidic acid (FA) is frequently associated with myopathy including rhabdomyolysis upon coadministration with statins. Because adverse effects with statins are usually the result of drug-drug interactions, we evaluated the inhibitory effects of FA against human CYP3A4 and clinically relevant drug transporters such as organic anion transporting polypeptides OATP1B1 and OATP1B3, multidrug resistant…

    Chronic treatment of methicillin-resistantStaphylococcus aureusstrains with the bacteriostatic agent fusidic acid (FA) is frequently associated with myopathy including rhabdomyolysis upon coadministration with statins. Because adverse effects with statins are usually the result of drug-drug interactions, we evaluated the inhibitory effects of FA against human CYP3A4 and clinically relevant drug transporters such as organic anion transporting polypeptides OATP1B1 and OATP1B3, multidrug resistant protein 1, and breast cancer resistance protein, which are involved in the oral absorption and/or systemic clearance of statins including atorvastatin, rosuvastatin, and simvastatin. FA was a weak reversible (IC50= 295 ± 1.0μM) and time-dependent (KI= 216 ± 41μM andkinact= 0.0179 ± 0.001 min(-1)) inhibitor of CYP3A4-catalyzed midazolam-1'-hydroxylase activity in human liver microsomes. FA demonstrated inhibition of multidrug resistant protein 1-mediated digoxin transport with an IC50value of 157 ± 1.0μM and was devoid of breast cancer resistance protein inhibition (IC50> 500μM). In contrast, FA showed potent inhibition of OATP1B1- and OATP1B3-specific rosuvastatin transport with IC50values of 1.59μM and 2.47μM, respectively. Furthermore, coadministration of oral rosuvastatin and FA to rats led to an approximately 19.3-fold and 24.6-fold increase in the rosuvastatin maximum plasma concentration and area under the plasma concentration-time curve, respectively, which could be potentially mediated through inhibitory effects of FA on rat Oatp1a4 (IC50= 2.26μM) and Oatp1b2 (IC50= 4.38μM) transporters, which are responsible for rosuvastatin uptake in rat liver. The potent inhibition of human OATP1B1/OATP1B3 by FA could attenuate hepatic uptake of statins, resulting in increased blood and tissue concentrations, potentially manifesting in musculoskeletal toxicity.

    Other authors
  • Species Differences in the Oxidative Desulfuration of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes.

    Drug Metabolism and Disposition

    N1-Substituted-6-arylthiouracils (represented by 6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (1)) represent a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account represents a summary of our in vitro studies on the facile oxidative desulfuration in 1 to a cyclic ether metabolite M1 in NADPH-supplemented rat (t1/2=8.6±0.4 min) and dog liver microsomes (t1/2=11.2±0.4 min), but not in human liver microsomes…

    N1-Substituted-6-arylthiouracils (represented by 6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (1)) represent a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account represents a summary of our in vitro studies on the facile oxidative desulfuration in 1 to a cyclic ether metabolite M1 in NADPH-supplemented rat (t1/2=8.6±0.4 min) and dog liver microsomes (t1/2=11.2±0.4 min), but not in human liver microsomes (t1/2>120 min). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or co-incubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfuration. Oxidation by FMO1 followed Michaelis-Menten kinetics with KM, Vmax, and CLintvalues of 209 μM, 20.4 nmol/min/mg protein, and 82.7 μl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggested that the initial FMO1-mediated S-oxygenation of 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more electrophilic sulfinic acid species that is trapped intramolecularly by the pendant alcohol motif in 1.

    Other authors
  • Pharmacokinetics and Disposition of the Thiouracil Derivative PF-06282999, an Orally Bioavailable, Irreversible Inactivator of Myeloperoxidase Enzyme, Across Animals and Humans.

    Drug Metabolism and Disposition

    The thiouracil derivative PF-06282999 is an irreversible inactivator of myeloperoxidase and is currently in clinical trials for the potential treatment of cardiovascular diseases. Concerns over idiosyncratic toxicity arising from bioactivation of the thiouracil motif to reactive species in the liver have been largely mitigated through the physicochemical (molecular weight, lipophilicity, and topological polar surface area) characteristics of PF-06282999, which generally favor elimination via…

    The thiouracil derivative PF-06282999 is an irreversible inactivator of myeloperoxidase and is currently in clinical trials for the potential treatment of cardiovascular diseases. Concerns over idiosyncratic toxicity arising from bioactivation of the thiouracil motif to reactive species in the liver have been largely mitigated through the physicochemical (molecular weight, lipophilicity, and topological polar surface area) characteristics of PF-06282999, which generally favor elimination via nonmetabolic routes. To test this hypothesis, pharmacokinetics and disposition studies were initiated with PF-06282999 using animals and in vitro assays, with the ultimate goal of predicting human pharmacokinetics and elimination mechanisms. Consistent with its physicochemical properties, PF-06282999 was resistant to metabolic turnover from liver microsomes and hepatocytes from animals and humans and was devoid of cytochrome P450 inhibition. In vitro transport studies suggested moderate intestinal permeability and minimal transporter-mediated hepatobiliary disposition. PF-06282999 demonstrated moderate plasma protein binding across all of the species. Pharmacokinetics in preclinical species characterized by low to moderate plasma clearances, good oral bioavailability at 3- to 5-mg/kg doses, and renal clearance as the projected major clearance mechanism in humans. Human pharmacokinetic predictions using single-species scaling of dog and/or monkey pharmacokinetics were consistent with the parameters observed in the first-in-human study, conducted in healthy volunteers at a dose range of 20-200 mg PF-06282999. In summary, disposition characteristics of PF-06282999 were relatively similar across preclinical species and humans, with renal excretion of the unchanged parent emerging as the principal clearance mechanism in humans, which was anticipated based on its physicochemical properties and supported by preclinical studies.

    Other authors
  • Discovery of 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999): A Highly Selective Mechanism-Based Myeloperoxidase Inhibitor for the Treatment of Cardiovascular Diseases.

    Journal of Medicinal Chemistry

    Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinson's diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition…

    Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinson's diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies.

    Other authors
  • Tracking Where the O's Go

    ACS Central Science (American Chemical Society)

  • Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment.

    Drug Metabolism and Disposition

    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human…

    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human circulating metabolites using plasma samples from a 14-day multiple ascending dose clinical study, however, revealed a glucuronide (M1) and monohydroxylation products (M2a and M2b/M2c) whose abundances (based on UV integration) were greater than 10% of the total drug-related material. Based on this preliminary observation, mass balance/excretion studies were triggered in animals, which revealed that the majority of circulating radioactivity following the oral administration of [¹⁴C]PF-04991532 was attributed to an unchanged parent (>70% in rats and dogs). In contrast with the human circulatory metabolite profile, the monohydroxylated metabolites were not detected in circulation in either rats or dogs. Available mass spectral evidence suggested that M2a and M2b/M2c were diastereomers derived from cyclopentyl ring oxidation in PF-04991532. Because cyclopentyl ring hydroxylation on the C-2 and C-3 positions can generate eight possible diastereomers, it was possible that additional diastereomers may have also formed and would need to be resolved from the M2a and M2b/M2c peaks observed in the current chromatography conditions. In conclusion, the human metabolite scouting study in tandem with the animal mass balance study allowed early identification of PF-04991532 oxidative metabolites, which were not predicted by in vitro methods and may require additional scrutiny in the development phase of PF-04991532.

    Other authors
  • Predicting toxicities of reactive metabolite-positive drug candidates.

    Annual Review in Pharmacoogy and Toxicology

    Because of the inability to predict and quantify the risk of idiosyncratic adverse drug reactions (IADRs) and because reactive metabolites (RMs) are thought to be responsible for the pathogenesis of some IADRs, the potential for RM formation within new chemical entities is routinely examined with the ultimate goal of eliminating or reducing the liability through iterative design. Likewise, avoidance of structural alerts is almost a standard practice in drug design. However, the perceived safety…

    Because of the inability to predict and quantify the risk of idiosyncratic adverse drug reactions (IADRs) and because reactive metabolites (RMs) are thought to be responsible for the pathogenesis of some IADRs, the potential for RM formation within new chemical entities is routinely examined with the ultimate goal of eliminating or reducing the liability through iterative design. Likewise, avoidance of structural alerts is almost a standard practice in drug design. However, the perceived safety concerns associated with the use of structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be overexaggerated. Numerous marketed drugs form RMs but do not cause idiosyncratic toxicity. In this review article, we present a critique of the structural alert/RM concept as applied in drug discovery and evaluate the evidence linking structural alerts and RMs to observed toxic effects. Pragmatic risk mitigation strategies to aid the advancement of drug candidates that carry a RM liability are also discussed.

    Other authors
  • Should the incorporation of structural alerts be restricted in drug design? An analysis of structure-toxicity trends with aniline-based drugs.

    Current Medicinal Chemistry

    Certain idiosyncratic adverse drug reactions (IADRs) can be triggered by electrophilic protein-reactive metabolites that are formed in the process of drug metabolism. While methodologies (e.g., structural alert concept in drug design, glutathione (GSH) trapping, and protein covalent binding) for examining reactive metabolite (RM) formation are available, predicting the IADR potential applying these parameters remains a significant challenge. The present work examines toxicity trends associated…

    Certain idiosyncratic adverse drug reactions (IADRs) can be triggered by electrophilic protein-reactive metabolites that are formed in the process of drug metabolism. While methodologies (e.g., structural alert concept in drug design, glutathione (GSH) trapping, and protein covalent binding) for examining reactive metabolite (RM) formation are available, predicting the IADR potential applying these parameters remains a significant challenge. The present work examines toxicity trends associated with the aniline structural alert in the top 200 prescribed drugs of 2011 and recently approved (2009-2013) small molecule drugs, in relation with 30 aniline-based drugs withdrawn from commercial use or associated with a black box warning for IADRs. The aniline sub-structure was found in several drugs from the toxic, most prescribed, and recently approved category. RMs resulting from the bioactivation of the aniline alert was also noted in the three categories chosen for comparison. A major discriminator between the toxic drugs and the majority of drugs in the most-prescribed list, however, was the daily dose--drugs most frequented associated with IADRs were the ones with higher daily doses (exceeding hundreds of milligrams). A greater tolerance for IADRs was also noted with certain drugs intended to treat rare, unmet medical needs (e.g., cancer). Overall, the analysis suggests that optimization of pharmacologic potency and pharmacokinetics that would lead to a lower daily dose, and therefore, a lower body burden of parent drug/metabolites, should be taken into consideration in drug discovery.

  • Metabolites in safety testing assessment in early clinical development: a case study with a glucokinase activator.

    Drug Metabolism and Disposition

    The present article summarizes MIST studies on a glucokinase activator, N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319), which is under development for the treatment of type 2 diametes mellitus. Metabolic profiling in rat, dog, and human hepatocytes revealed that PF-04937319 is metabolized via oxidative (major) and hydrolytic pathways (minor). N-Demethylation to metabolite M1…

    The present article summarizes MIST studies on a glucokinase activator, N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319), which is under development for the treatment of type 2 diametes mellitus. Metabolic profiling in rat, dog, and human hepatocytes revealed that PF-04937319 is metabolized via oxidative (major) and hydrolytic pathways (minor). N-Demethylation to metabolite M1 [N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide] was the major metabolic fate of PF-04937319 in human (but not rat or dog) hepatocytes, and was catalyzed by CYP3A and CYP2C isoforms. Qualitative examination of circulating metabolites in humans at the 100- and 300-mg doses from a 14-day multiple dose study revealed unchanged parent drug and M1 as principal components. Because M1 accounted for 65% of the drug-related material at steady state, an authentic standard was synthesized and used for comparison of steady-state exposures in humans and the 3-month safety studies in rats and dogs at the no-observed-adverse-effect level. Although circulating levels of M1 were very low in beagle dogs and female rats, adequate coverage was obtained in terms of total maximal plasma concentration (∼7.7× and 1.8×) and area under the plasma concentration-time curve (AUC; 3.6× and 0.8× AUC) relative to the 100- and 300-mg doses, respectively, in male rats. Examination of primary pharmacology revealed M1 was less potent as a glucokinase activator than the parent drug (compound PF-04937319: EC50 = 0.17 μM; M1: EC50 = 4.69 μM). Furthermore, M1 did not inhibit major human P450 enzymes (IC50 > 30 μM), and was negative in the Salmonella Ames assay, with minimal off-target pharmacology, based on CEREP broad ligand profiling. Insights gained from this analysis should lead to a more efficient and focused development plan for fulfilling MIST requirements with PF-04937319.

    Other authors
  • Identification of a novel, non-tetrahydroquinoline variant of the cholesteryl ester transfer protein (CETP) inhibitor torcetrapib, with improved aqueous solubility.

    Xenobiotica

    Elaborate studies of CETP polymorphisms and genetic deficiency in humans suggest direct links between CETP, HDL-c levels and coronary heart diseases. The hypothesis that CETP inhibition by small molecule inhibitors raises HDL-c has been validated clinically with structurally-diverse CETP inhibitors such as torcetrapib, anacetrapib, dalcetrapib and evacetrapib. Despite promising phase 2 results with respect to HDL-c elevation, torcetrapib was discontinued in phase 3 trials due to increased…

    Elaborate studies of CETP polymorphisms and genetic deficiency in humans suggest direct links between CETP, HDL-c levels and coronary heart diseases. The hypothesis that CETP inhibition by small molecule inhibitors raises HDL-c has been validated clinically with structurally-diverse CETP inhibitors such as torcetrapib, anacetrapib, dalcetrapib and evacetrapib. Despite promising phase 2 results with respect to HDL-c elevation, torcetrapib was discontinued in phase 3 trials due to increased mortality rates in the cardiovascular outcomes study. Emerging evidence for the adverse effects hints at off-target chemotype-specific cardiovascular toxicity, possibly related to the pressor effects of torcetrapib, since structurally diverse CETP inhibitors such as anacetrapib are not associated with blood pressure increases in humans. Nonclinical follow-up studies showed that torcetrapib induces aldosterone biosynthesis and secretion in vivo and in vitro, an effect which is not observed with other CETP inhibitors in clinical development. As part of ongoing efforts to identify novel CETP inhibitors devoid of pressor effects, strategies were implemented towards the design of compounds, which lack the 1,2,3,4-tetrahydroquinoline (THQ) scaffold present in torcetrapib. In this article, we disclose results of structure-activity relationship studies for a series of novel non-THQ CETP inhibitors, which resulted in the identification of a novel isonipecotic acid derivative 10 (also referred to as PF-04445597) with vastly improved oral pharmacokinetic properties mainly as a result of improved aqueous solubility. This feature is attractive in that, it bypasses significant investments needed to develop compatible solubilizing formulation(s) for oral drug delivery of highly lipophilic and poorly soluble compounds; attributes, which are usually associated with small molecule CETP inhibitors. PF-04445597 was also devoid of aldosterone secretion in human H295R adrenal carcinoma cells.

    Other authors
  • Drug metabolites as cytochrome P450 inhibitors: a retrospective analysis and proposed algorithm for evaluation of the pharmacokinetic interaction potential of metabolites in drug discovery and development

    Drug Metabolism and Disposition

    Understanding drug-drug interactions (DDIs) is a key component of clinical practice ensuring patient safety and efficacy of medicines. The role of drug metabolites in DDIs is a developing area of science, and has been recently highlighted in a draft regulatory guidance. The guidance states that metabolites representing ≥25% of the parent drug's area under the plasma concentration/time curve and/or >10% of exposure of total drug-related material should trigger in vitro characterization of…

    Understanding drug-drug interactions (DDIs) is a key component of clinical practice ensuring patient safety and efficacy of medicines. The role of drug metabolites in DDIs is a developing area of science, and has been recently highlighted in a draft regulatory guidance. The guidance states that metabolites representing ≥25% of the parent drug's area under the plasma concentration/time curve and/or >10% of exposure of total drug-related material should trigger in vitro characterization of metabolites for cytochrome P450 inhibition and propensity for DDIs. The relationship between in vitro cytochrome P450 inhibitory potency, systemic exposure, and DDI potential of drug metabolites was examined using the Pfizer development database to identify compounds with pre-existing in vivo biotransformation data, where circulating metabolites were identified in humans. The database yielded 33 structurally diverse compounds with collectively 115 distinct circulating metabolites. Of these, 52% (60/115) achieved exposures >25% of parent drug levels as judged from mass balance/metabolite identification studies. It was noted that 14 metabolite standards for 12 parent drugs had been synthesized, monitored in clinical studies, and examined for cytochrome P450 inhibition. For the 14 metabolite/parent drug pairs, no clinically relevant DDIs were expected to occur against the major human cytochrome P450 isoforms. A review of the literature for parent/metabolite DDI information was also conducted to examine trends using a larger data set. Leveraging the analysis of both internal and literature-based data sets, an algorithm was devised for use in drug discovery/early development to assess cytochrome P450 inhibitory potential of drug metabolites and the propensity to cause a clinically relevant DDI.

    Other authors
  • In Vitro Metabolism of the Glucagon-Like Peptide-1 (GLP-1)-Derived Metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in Mouse and Human Hepatocytes.

    Drug Metabolism and Disposition

    Previous studies have revealed that the glucoincretin hormone glucagon-like peptide-1 (GLP-1)(7-36)amide is metabolized by dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase 24.11 (NEP) to yield GLP-1(9-36)amide and GLP-1(28-36)amide, respectively, as the principal metabolites. Contrary to the previous notion that GLP-1(7-36)amide metabolites are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with both GLP-1(9-36)amide and…

    Previous studies have revealed that the glucoincretin hormone glucagon-like peptide-1 (GLP-1)(7-36)amide is metabolized by dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase 24.11 (NEP) to yield GLP-1(9-36)amide and GLP-1(28-36)amide, respectively, as the principal metabolites. Contrary to the previous notion that GLP-1(7-36)amide metabolites are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with both GLP-1(9-36)amide and GLP-1(28-36)amide in animals and humans. In the present work, we examined the metabolic stability of the two GLP-1(7-36)amide metabolites in cryopreserved hepatocytes, which have been used to demonstrate the in vitro insulin-like effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis. To examine the metabolic stability of the GLP-1(7-36)amide metabolites, a liquid chromatography-tandem mass spectrometry assay was developed for the quantitation of the intact peptides in hepatocyte incubations. GLP-1(9-36)amide and GLP-1(28-36)amide were rapidly metabolized in mouse [GLP-1(9-36)amide: t1/2 = 52 minutes; GLP-1(28-36)amide: t1/2 = 13 minutes] and human hepatocytes [GLP-1(9-36)amide: t1/2 = 180 minutes; GLP-1(28-36)amide: t1/2 = 24 minutes), yielding a variety of N-terminal cleavage products that were characterized using mass spectrometry. Metabolism at the C terminus was not observed for either peptides. The DPP-IV and NEP inhibitors diprotin A and phosphoramidon, respectively, did not induce resistance in the two peptides toward proteolytic cleavage. Overall, our in vitro findings raise the intriguing possibility that the insulinomimetic effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis and oxidative stress might be due, at least in part, to the actions of additional downstream metabolites, which are obtained from the enzymatic cleavage of the peptide backbone in the parent compounds.

    Other authors
  • Elucidation of the biochemical basis for a clinical drug-drug interaction between atorvastatin and 5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), a subtype selective agonist of PPAR-a

    Xenobiotica

    5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), an agonist of the peroxisome proliferator-activated receptor alpha, has been evaluated in the clinic to treat dyslipidemia and type 2 diabetes mellitus. Herein, we investigate the effect of CP-778875 on the pharmacokinetics of atorvastatin acid and its metabolites in humans. The study incorporated a fixed-sequence design conducted in two groups. Group A was designed to estimate the effects of multiple doses of…

    5-(N-(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778875), an agonist of the peroxisome proliferator-activated receptor alpha, has been evaluated in the clinic to treat dyslipidemia and type 2 diabetes mellitus. Herein, we investigate the effect of CP-778875 on the pharmacokinetics of atorvastatin acid and its metabolites in humans. The study incorporated a fixed-sequence design conducted in two groups. Group A was designed to estimate the effects of multiple doses of CP-778875 on the single dose pharmacokinetics of atorvastatin. Subjects in group A (n = 26) received atorvastatin (40 mg) on days 1 and 9 and CP-778875 (1.0 mg QD) on days 5-12. Group B was designed to examine the effects of multiple doses of atorvastatin on the single dose pharmacokinetics of CP-778875. Subjects in group B (n = 29) received CP-778875 (0.3 mg) on days 1 and 9 and atorvastatin (40 mg QD) on days 5-12. Mean maximum serum concentration (Cmax) and area under the curve of atorvastatin were increased by 45% and 20%, respectively, upon co-administration with CP-778875. Statistically significant increases in the systemic exposure of ortho- and para-hydroxyatorvastatin were also observed upon concomitant dosing with CP-778875. CP-778875 pharmacokinetics, however, were not impacted upon concomitant dosing with atorvastatin.

    Other authors
  • Demonstration of the innate electrophilicity of 4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP), a small-molecule positive allosteric modulator of the glucagon-like peptide-1 receptor

    Drug Metabolism and Disposition

    4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation…

    4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation after oral administration of a 10-mg/kg dose in rats was consistent with the lack of an insulinotropic effect of orally administered BETP in this species. Likewise, systemic concentrations of BETP in the rat upon i.v. administration (1 mg/kg) were minimal (and sporadic). In vitro incubations in bovine serum albumin, plasma, and liver microsomes from rodents and humans indicated a facile degradation of BETP. Failure to detect metabolites in plasma and liver microsomal incubations in the absence of NADP was suggestive of a covalent interaction between BETP and a protein amino acid residue(s) in these matrices. Incubations of BETP with glutathione (GSH) in buffer revealed a rapid nucleophilic displacement of the ethylsulfoxide functionality by GSH to yield adduct M1, which indicated that BETP was intrinsically electrophilic. The structure of M1 was unambiguously identified by comparison of its chromatographic and mass spectral properties with an authentic standard. The GSH conjugate of BETP was also characterized in NADPH- and GSH-supplemented liver microsomes and in plasma samples from the pharmacokinetic studies. Unlike BETP, M1 was inactive as an allosteric modulator of the GLP-1R.

    Other authors
    See publication
  • Demonstration of the innate electrophilicity of 4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP), a small-molecule positive allosteric modulator of the glucagon-like peptide-1 receptor

    Drug Metabolism and Disposition

    4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation…

    4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation after oral administration of a 10-mg/kg dose in rats was consistent with the lack of an insulinotropic effect of orally administered BETP in this species. Likewise, systemic concentrations of BETP in the rat upon i.v. administration (1 mg/kg) were minimal (and sporadic). In vitro incubations in bovine serum albumin, plasma, and liver microsomes from rodents and humans indicated a facile degradation of BETP. Failure to detect metabolites in plasma and liver microsomal incubations in the absence of NADP was suggestive of a covalent interaction between BETP and a protein amino acid residue(s) in these matrices. Incubations of BETP with glutathione (GSH) in buffer revealed a rapid nucleophilic displacement of the ethylsulfoxide functionality by GSH to yield adduct M1, which indicated that BETP was intrinsically electrophilic. The structure of M1 was unambiguously identified by comparison of its chromatographic and mass spectral properties with an authentic standard. The GSH conjugate of BETP was also characterized in NADPH- and GSH-supplemented liver microsomes and in plasma samples from the pharmacokinetic studies. Unlike BETP, M1 was inactive as an allosteric modulator of the GLP-1R.

    Other authors
  • Reactive metabolite trapping studies on imidazo- and 2-methylimidazo[2,1-b]thiazole-based inverse agonists of the ghrelin receptor

    Drug Metabolism and Disposition

    The current study examined the bioactivation potential of ghrelin receptor inverse agonists, 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(imidazo[2,1-b]thiazol-6-yl)ethanone (1) and 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(2-methylimidazo[2,1-b]thiazol-6-yl)ethanone (2), containing a fused imidazo[2,1-b]thiazole motif in the core structure. Both compounds underwent oxidative metabolism in NADPH- and…

    The current study examined the bioactivation potential of ghrelin receptor inverse agonists, 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(imidazo[2,1-b]thiazol-6-yl)ethanone (1) and 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(2-methylimidazo[2,1-b]thiazol-6-yl)ethanone (2), containing a fused imidazo[2,1-b]thiazole motif in the core structure. Both compounds underwent oxidative metabolism in NADPH- and glutathione-supplemented human liver microsomes to yield glutathione conjugates, which was consistent with their bioactivation to reactive species. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in the thiol conjugates was on the thiazole ring within the bicycle. Two glutathione conjugates were discerned with the imidazo[2,1-b]thiazole derivative 1. One adduct was derived from the Michael addition of glutathione to a putative S-oxide metabolite of 1, whereas, the second adduct was formed via the reaction of a second glutathione molecule with the initial glutathione-S-oxide adduct. In the case of the 2-methylimidazo[2,1-b]thiazole analog 2, glutathione conjugation occurred via an oxidative desulfation mechanism, possibly involving thiazole ring epoxidation as the rate-limiting step. Additional insights into the mechanism were obtained via ¹⁸O exchange and trapping studies with potassium cyanide. The mechanistic insights into the bioactivation pathways of 1 and 2 allowed the deployment of a rational chemical intervention strategy that involved replacement of the thiazole ring with a 1,2,4-thiadiazole group to yield 2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl)-2-(2-methylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)ethanone (3). These structural changes not only abrogated the bioactivation liability but also retained the attractive pharmacological attributes of the prototype agents.

    Other authors
  • Metabolism-guided drug design

    Medicinal Chemistry Communications (Royal Society of Chemistry)

    Preclinical drug metabolism studies play a key role in the lead identification and optimization process in drug discovery. Characterization of the metabolic pathways of new chemical entities is an integral part of drug discovery not only in optimizing clearance properties but also in eliminating potential safety concerns associated with the formation of protein and/or DNA-reactive metabolites. Metabolism studies in early discovery have been used to identify metabolic soft spots leading to high…

    Preclinical drug metabolism studies play a key role in the lead identification and optimization process in drug discovery. Characterization of the metabolic pathways of new chemical entities is an integral part of drug discovery not only in optimizing clearance properties but also in eliminating potential safety concerns associated with the formation of protein and/or DNA-reactive metabolites. Metabolism studies in early discovery have been used to identify metabolic soft spots leading to high metabolic instability, and also in the characterization of active metabolites. Availability of such information has aided in the rational design of compounds with increased resistance to metabolism and overall improvements in oral pharmacokinetics and dose size. Mechanistic drug metabolism studies have proven particularly invaluable in mitigating reactive metabolite risks, which can lead to mutagenicity, time-dependent inactivation of cytochrome P450 enzymes and/or idiosyncratic adverse drug reactions. Characterization of stable conjugates derived from bioactivation of small molecule drug candidates provides indirect information on the structure of the reactive metabolite species, thereby providing insight into the bioactivation mechanism and hence a rationale on which to base subsequent chemical intervention strategies. The review will showcase case studies of metabolism-guided drug design using literature and in-house examples.

    Other authors
  • Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male ssubjects.

    Drug Metabolism and Disposition

    Abstract
    The disposition of ertugliflozin (PF-04971729), an orally active selective inhibitor of the sodium-dependent glucose cotransporter 2, was studied after a single 25-mg oral dose of [(14)C]-ertugliflozin to healthy human subjects. Mass balance was achieved with approximately 91% of the administered dose recovered in urine and feces. The total administered radioactivity excreted in feces and urine was 40.9% and 50.2%, respectively. The absorption of ertugliflozin in humans was rapid…

    Abstract
    The disposition of ertugliflozin (PF-04971729), an orally active selective inhibitor of the sodium-dependent glucose cotransporter 2, was studied after a single 25-mg oral dose of [(14)C]-ertugliflozin to healthy human subjects. Mass balance was achieved with approximately 91% of the administered dose recovered in urine and feces. The total administered radioactivity excreted in feces and urine was 40.9% and 50.2%, respectively. The absorption of ertugliflozin in humans was rapid with a T(max) at ∼1.0 hour. Of the total radioactivity excreted in feces and urine, unchanged ertugliflozin collectively accounted for ∼35.3% of the dose, suggestive of moderate metabolic elimination in humans. The principal biotransformation pathway involved glucuronidation of the glycoside hydroxyl groups to yield three regioisomeric metabolites, M4a, M4b, and M4c (∼39.3% of the dose in urine), of which M4c was the major regioisomer (∼31.7% of the dose). The structure of M4a and M4c were confirmed to be ertugliflozin -4-O-β- and -3-O-β-glucuronide, respectively, via comparison of the HPLC retention time and mass spectra with authentic standards. A minor metabolic fate involved oxidation by cytochrome P450 to yield monohydroxylated metabolites M1 and M3 and des-ethyl ertugliflozin (M2), which accounted for ∼5.2% of the dose in excreta. In plasma, unchanged ertugliflozin and the corresponding 4-O-β- (M4a) and 3-O-β- (M4c) glucuronides were the principal components, which accounted for 49.9, 12.2, and 24.1% of the circulating radioactivity. Overall, these data suggest that ertugliflozin is well absorbed in humans, and eliminated largely via glucuronidation.

    Other authors
  • Reactive drug metabolites (Methods and Principles in Medicinal Chemistry)

    Wiley-WCH

    Closing a gap in the scientifi c literature, this first comprehensive introduction to the topic is based on current best practice in one of the largest
    pharmaceutical companies worldwide. The first chapters trace the development of our understanding of drug metabolite toxicity, covering basic concepts and techniques in the process, while the second part details chemical toxicophores that are prone to reactive metabolite formation. This section also reviews the various drug-metabolizing…

    Closing a gap in the scientifi c literature, this first comprehensive introduction to the topic is based on current best practice in one of the largest
    pharmaceutical companies worldwide. The first chapters trace the development of our understanding of drug metabolite toxicity, covering basic concepts and techniques in the process, while the second part details chemical toxicophores that are prone to reactive metabolite formation. This section also reviews the various drug-metabolizing enzymes that can participate in catalyzing reactive metabolite formation, including a discussion of the structure-toxicity relationships for drugs. Two chapters are dedicated to the currently hot topics of herbal constituents and IADRs.

    The next part covers current strategies and approaches to evaluate the reactive metabolite potential of new drug candidates, both by predictive
    and by bioanalytical methods. There then follows an in-depth analysis of the toxicological potential of the top 200 prescription drugs, illustrating
    the power and the limits of the toxicophore concept, backed by numerous case studies. Finally, a risk-benefi t approach to managing the toxicity risk of reactive metabolite-prone drugs is presented.

    Since the authors carefully develop the knowledge needed, from fundamental considerations to current industry standards, no degree in pharmacology is required to read this book, making it perfect for medicinal chemists without in-depth pharmacology training.

    Other authors
    See publication
  • Insights into the novel hydrolytic mechanism of a diethyl 2-phenyl-2-(2-arylacetoxy)methyl malonate ester-based microsomal triglyceride transfer protein (MTP) inhibitor.

    Chemical Research in Toxicology

    Diethyl 2-((2-(3-(dimethylcarbamoyl)-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)methyl)-2-phenylmalonate (JTT-130) is an intestine-specific inhibitor of MTP and does not cause increases in transaminases in short-term clinical trials in patients with dyslipidemia. In the course of discovery efforts around tissue-specific inhibitors of MTP, the mechanism of JTT-130 hydrolysis was examined in detail. Lack of ¹⁸O incorporation in 1 following the incubation of JTT-130 in…

    Diethyl 2-((2-(3-(dimethylcarbamoyl)-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)methyl)-2-phenylmalonate (JTT-130) is an intestine-specific inhibitor of MTP and does not cause increases in transaminases in short-term clinical trials in patients with dyslipidemia. In the course of discovery efforts around tissue-specific inhibitors of MTP, the mechanism of JTT-130 hydrolysis was examined in detail. Lack of ¹⁸O incorporation in 1 following the incubation of JTT-130 in human liver microsomes in the presence of H₂¹⁸O suggested that hydrolysis did not occur via a simple cleavage of the ester linkage. The characterization of atropic acid (2-phenylacrylic acid) as a metabolite was consistent with a hydrolytic pathway involving initial hydrolysis of one of the pendant malonate ethyl ester groups followed by decarboxylative fragmentation to 1 and the concomitant liberation of the potentially electrophilic acrylate species. Glutathione conjugates of atropic acid and its ethyl ester were also observed in microsomal incubations of JTT-130 that were supplemented with the thiol nucleophile. Additional support for the hydrolysis mechanism was obtained from analogous studies on diethyl 2-(2-(2-(3-(dimethylcarbamoyl)-4-(4'-trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)ethyl)-2-phenylmalonate (3), which cannot participate in hydrolysis via the fragmentation pathway because of the additional methylene group. ¹⁸O was readily incorporated into 1 during the enzymatic hydrolysis of 3, suggestive of a mechanism involving direct hydrolytic cleavage of the ester group in 3. Finally, 3-(ethylamino)-2-(ethylcarbamoyl)-3-oxo-2-phenylpropyl 2-(3-(dimethylcarbamoyl)-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetate (4), which possessed an N,N-diethyl-2-phenylmalonamide substituent (in lieu of the diethyl-2-phenylmalonate motif in JTT-130) proved to be resistant to the hydrolytic cleavage/decarboxylative fragmentation pathway

    Other authors
  • Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance

    Medicinal Chemistry Communications (Royal Society of Chemistry)

    A series of cyclic peptides were designed and prepared to investigate the physicochemical properties that affect oral bioavailabilty of this chemotype in rats. In particular, the ionization state of the peptide was examined by the incorporation of naturally occurring amino acid residues that are charged in differing regions of the gut. In addition, data was generated in a variety of in vitro assays and the usefulness of this data in predicting the subsequent oral bioavailability observed in the…

    A series of cyclic peptides were designed and prepared to investigate the physicochemical properties that affect oral bioavailabilty of this chemotype in rats. In particular, the ionization state of the peptide was examined by the incorporation of naturally occurring amino acid residues that are charged in differing regions of the gut. In addition, data was generated in a variety of in vitro assays and the usefulness of this data in predicting the subsequent oral bioavailability observed in the rat is discussed.

  • Drug discovery for a new generation of covalent drugs.

    Expert Opinion on Drug Discovery

    The design of target-specific covalent inhibitors is conceptually attractive because of increased biochemical efficiency through covalency and increased duration of action that outlasts the pharmacokinetics of the agent. Although many covalent inhibitors have been approved or are in advanced clinical trials to treat indications such as cancer and hepatitis C, there is a general tendency to avoid them as drug candidates because of concerns regarding immune-mediated toxicity that can arise from…

    The design of target-specific covalent inhibitors is conceptually attractive because of increased biochemical efficiency through covalency and increased duration of action that outlasts the pharmacokinetics of the agent. Although many covalent inhibitors have been approved or are in advanced clinical trials to treat indications such as cancer and hepatitis C, there is a general tendency to avoid them as drug candidates because of concerns regarding immune-mediated toxicity that can arise from indiscriminate reactivity with off-target proteins.
    AREAS COVERED:
    The review examines potential reason(s) for the excellent safety record of marketed covalent agents and advanced clinical candidates for emerging therapeutic targets. A significant emphasis is placed on proteomic techniques and chemical/biochemical reactivity assays that aim to provide a systematic rank ordering of pharmacologic selectivity relative to off-target protein reactivity of covalent inhibitors.
    EXPERT OPINION:
    While tactics to examine selective covalent modification of the pharmacologic target are broadly applicable in drug discovery, it is unclear whether the output from such studies can prospectively predict idiosyncratic immune-mediated drug toxicity. Opinions regarding an acceptable threshold of protein reactivity/body burden for a toxic electrophile and a non-toxic electrophilic covalent drug have not been defined. Increasing confidence in proteomic and chemical/biochemical reactivity screens will require a retrospective side-by-side profiling of marketed covalent drugs and electrophiles known to cause deleterious toxic effects via non-selective covalent binding.

    Other authors
  • Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks.

    Journal of Medicinal Chemistry

    Other authors
  • Pharmacokinetics and Metabolism in Drug Design 3rd Edition

    Wiley-VCH

    Methods and Principles in Medicinal Chemistry
    Series Edited by Mannhold, Raimund / Kubinyi, Hugo / Folkers, Gerd

    Authors / Book Editors - Smith, Dennis A. / Allerton, Charlotte / Kalgutkar, Amit S. / Waterbeemd, Han van de / Walker, Don K.


    Other authors
    See publication
  • Oxidative metabolism of a quinoxaline derivative by xanthine oxidase in rodent plasma.

    Chemical Research in Toxicology

    As part of efforts directed at the G protein-coupled receptor 119 agonist program for type 2 diabetes, a series of cyanopyridine derivatives exemplified by isopropyl-4-(3-cyano-5-(quinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate (1) were identified as novel chemotypes worthy of further hit-to-lead optimization. Compound 1, however, was found to be unstable in plasma (37 °C, pH 7.4) from rat (T(1/2) = 16 min), mouse (T(1/2) = 61 min), and guinea pig (T(1/2) = 4 min). Failure to detect any…

    As part of efforts directed at the G protein-coupled receptor 119 agonist program for type 2 diabetes, a series of cyanopyridine derivatives exemplified by isopropyl-4-(3-cyano-5-(quinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate (1) were identified as novel chemotypes worthy of further hit-to-lead optimization. Compound 1, however, was found to be unstable in plasma (37 °C, pH 7.4) from rat (T(1/2) = 16 min), mouse (T(1/2) = 61 min), and guinea pig (T(1/2) = 4 min). Failure to detect any appreciable amount of 1 in plasma samples from protein binding and pharmacokinetic studies in rats was consistent with its labile nature in plasma. Instability noted in rodent plasma was not observed in plasma from dogs, monkeys, and humans (T(1/2) > 370 min at 37 °C, pH 7.4). Metabolite identification studies in rodent plasma revealed the formation of a single metabolite (M1), which was 16 Da higher than the molecular weight of 1 (compound 1, MH(+) = 403; M1, MH(+) = 419). Pretreatment of rat plasma with allopurinol, but not raloxifene, abolished the conversion of 1 to M1, suggesting that xanthine oxidase (XO) was responsible for the oxidative instability. Consistent with the known catalytic mechanism of XO, the source of oxygen incorporated in M1 was derived from water rather than molecular oxygen. The formation of M1 was also demonstrated in incubations of 1 with purified bovine XO. The structure of M1 was determined by NMR analysis to be isopropyl-4-(3-cyano-5-(3-oxo-3,4-dihydroquinoxalin-6-yl)pyridine-2-yl)piperazine-1-carboxylate. A close-in analogue of 1, which lacked the quinoxaline motif (e.g., 5-(4-cyano-3-methylphenyl)-2-(4-(3-isopropyl-1,2,4-oxadiazol-5-yl)piperidin-1-yl)nicotinitrile (2)) was stable in rat plasma and possessed substantially improved GPR119 agonist properties. To the best of our knowledge, our studies constitute the first report on the involvement of rodent XO in oxidative drug metabolism in plasma.

    Other authors
  • On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds.

    Nature Chemical Biology

    Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity…

    Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat.

  • Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus.

    Drug Metabolism and Disposition

    (1S,2S,3S,4R,5S)-5-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1-hydroxymethyl-6,8-dioxabicyclo[3.2.1]octane-2,3,4-triol (PF-04971729), a potent and selective inhibitor of the sodium-dependent glucose cotransporter 2, is currently in phase 2 trials for the treatment of diabetes mellitus. This article describes the preclinical species and in vitro human disposition characteristics of PF-04971729 that were used in experiments performed to support the first-in-human study. Plasma clearance was low in rats…

    (1S,2S,3S,4R,5S)-5-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1-hydroxymethyl-6,8-dioxabicyclo[3.2.1]octane-2,3,4-triol (PF-04971729), a potent and selective inhibitor of the sodium-dependent glucose cotransporter 2, is currently in phase 2 trials for the treatment of diabetes mellitus. This article describes the preclinical species and in vitro human disposition characteristics of PF-04971729 that were used in experiments performed to support the first-in-human study. Plasma clearance was low in rats (4.04 ml · min(-1) · kg(-1)) and dogs (1.64 ml · min(-1) · kg(-1)), resulting in half-lives of 4.10 and 7.63 h, respectively. Moderate to good bioavailability in rats (69%) and dogs (94%) was observed after oral dosing. The in vitro biotransformation profile of PF-04971729 in liver microsomes and cryopreserved hepatocytes from rat, dog, and human was qualitatively similar; prominent metabolic pathways included monohydroxylation, O-deethylation, and glucuronidation. No human-specific metabolites of PF-04971729 were detected in in vitro studies. Reaction phenotyping studies using recombinant enzymes indicated a role of CYP3A4/3A5, CYP2D6, and UGT1A9/2B7 in the metabolism of PF-04971729. No competitive or time-dependent inhibition of the major human cytochrome P450 enzymes was discerned with PF-04971729. Inhibitory effects against the organic cation transporter 2-mediated uptake of [(14)C]metformin by PF-04971729 also were very weak (IC(50) = ∼900 μM). Single-species allometric scaling of rat pharmacokinetics of PF-04971729 was used to predict human clearance, distribution volume, and oral bioavailability. Human pharmacokinetic predictions were consistent with the potential for a low daily dose. First-in-human studies after oral administration indicated that the human pharmacokinetics/dose predictions for PF-04971729 were in the range that is likely to yield a favorable pharmacodynamic response.

    Other authors
  • Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: A perspective based on the critical examination of trends in the top 200 drugs marketed in the United States

    Chemical Research in Toxicology/American Chemical Society

    Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone…

    Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated.

    Other authors
    See publication
  • Discovery of a clinical candidate from the structurally unique dioxa-bicyclo[3.2.1]octane class of sodium-dependent glucose cotransporter 2 inhibitors.

    Journal of Medicinal Chemistry

    Abstract
    Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It is currently in phase 2 clinical trials and is being…

    Abstract
    Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It is currently in phase 2 clinical trials and is being evaluated for the treatment of type 2 diabetes.

  • Intrinsic electrophilicity of a 4-substituted-5-cyano-6-(2-methylpyridin-3-yloxy)pyrimidine derivative: structural characterization of glutathione conjugates in vitro.

    Chemical Research in Toxicology (American Chemical Society)

    Isopropyl 9-anti-[5-cyano-6-(2-methyl-pyridin-3-yloxy)-pyrimidin-4-yloxy]-3-oxa-7-aza-bicyclo[3.3.1]nonane-7-carboxylate (1) represents a prototypic compound from a lead chemical series of G protein-coupled receptor 119 agonists, intended for treatment of type 2 diabetes. When compound 1 was incubated with NADPH-supplemented human liver microsomes in the presence of glutathione, two thioether conjugates M4-1 and M5-1 were observed. Omission of NADPH from the microsomal incubations prevented the…

    Isopropyl 9-anti-[5-cyano-6-(2-methyl-pyridin-3-yloxy)-pyrimidin-4-yloxy]-3-oxa-7-aza-bicyclo[3.3.1]nonane-7-carboxylate (1) represents a prototypic compound from a lead chemical series of G protein-coupled receptor 119 agonists, intended for treatment of type 2 diabetes. When compound 1 was incubated with NADPH-supplemented human liver microsomes in the presence of glutathione, two thioether conjugates M4-1 and M5-1 were observed. Omission of NADPH from the microsomal incubations prevented the formation of M5-1 but not M4-1. The formation of M4-1 was also discerned in incubations of 1 and glutathione with human liver cytosol, partially purified glutathione transferase, and in phosphate buffer at pH 7.4. M4-1 was isolated, and its structure ascertained from LC-MS/MS and NMR analysis. The mass spectral and NMR data suggested that M4-1 was obtained from a nucleophilic displacement of the 6-(2-methylpyridin-3-yloxy) group in 1 by glutathione. In addition, mass spectral studies revealed that M5-1 was derived from an analogous displacement reaction on a monohydroxylated metabolite of 1; the regiochemistry of hydroxylation was established to be on the isopropyl group. Of great interest were the findings that replacement of the 5-cyano group in 1 with a 5-methyl group resulted in 2, which was practically inert toward reaction with glutathione. This observation suggests that the electron-withdrawing potential of the C5 cyano group serves to increase the electrophilicity of the C6 carbon (via stabilization of the transition state) and favors reaction with the nucleophilic thiol. The mechanistic insights gained from these studies should assist medicinal chemistry efforts toward the design of analogs that retain primary pharmacology but are latent toward reaction with biological nucleophiles, thus mitigating the potential for toxicological outcome due to adduction with glutathione or proteins.

    Other authors
  • Discovery tactics to mitigate toxicity risks due to reactive metabolite formation with 2-(2-hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3h)-one derivatives, potent calcium-sensing receptor antagonists and clinical candidate(s) for the treatme

    Chemical Research in Toxicology (American Chemical Society)

    The structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor have been recently disclosed On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human trials to mitigate uncertainty surrounding the PK/PD predictions for a short-acting bone anabolic agent.…

    The structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor have been recently disclosed On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human trials to mitigate uncertainty surrounding the PK/PD predictions for a short-acting bone anabolic agent. However, glutathione conjugates of 1 were detected in human liver microsomes in an NADPH-dependent fashion. Characterization of the GSH conjugate structures allowed insight(s) into the bioactivation pathway, which involved CYP3A4-mediated phenol ring oxidation to the catechol, followed by further oxidation to the electrophilic ortho-quinone species. Despite forming identical RMs in rat liver microsomes, no clinical or histopathological signs prototypical of target organ toxicity were observed with 1 in in vivo safety assessments in rats. Likewise, metabolism-based studies (e.g., evaluation of detoxicating routes of clearance and exhaustive PK/PD studies in animals to prospectively predict the likelihood of a low human efficacious dose) were also conducted, which mitigated the risks of idiosyncratic toxicity to a large degree. In parallel, medicinal chemistry efforts were initiated to identify additional compounds with a complementary range of human PK predictions, which would maximize the likelihood of achieving the desired PD effect in the clinic. The back-up strategy also incorporated an overarching goal of reducing/eliminating reactive metabolite formation observed with 1. Herein, the collective findings from our discovery efforts in the CaSR program, which include the incorporation of appropriate derisking steps when dealing with RM issues are summarized.

    Other authors
  • N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine (CP-100,356) as a "chemical knock-out equivalent" to assess the impact of efflux transporters on oral drug absorption in the rat.

    Journal of Pharmaceutical Sciences

    The utility of the diaminoquinazoline derivative CP-100,356 as an in vivo probe to selectively assess MDR1/BCRP-mediated drug efflux was examined in the rat. CP-100,356 was devoid of inhibition (IC(50) >50 microM) against major human P450 enzymes including P4503A4. In human MDR1-transfected MDCKII cells, CP-100,356 inhibited acetoxymethyl calcein (calcein-AM) uptake (IC(50) approximately 0.5 +/- 0.07 microM) and digoxin transport (IC(50) approximately 1.2 +/- 0.1 microM). Inhibition of…

    The utility of the diaminoquinazoline derivative CP-100,356 as an in vivo probe to selectively assess MDR1/BCRP-mediated drug efflux was examined in the rat. CP-100,356 was devoid of inhibition (IC(50) >50 microM) against major human P450 enzymes including P4503A4. In human MDR1-transfected MDCKII cells, CP-100,356 inhibited acetoxymethyl calcein (calcein-AM) uptake (IC(50) approximately 0.5 +/- 0.07 microM) and digoxin transport (IC(50) approximately 1.2 +/- 0.1 microM). Inhibition of prazosin transport (IC(50) approximately 1.5 +/- 0.3 microM) in human BCRP-transfected MDCKII cells by CP-100,356 confirmed the dual MDR1/BCRP inhibitory properties. CP-100,356 was a weak inhibitor of OATP1B1 (IC(50) approximately 66 +/- 1.1 microM) and was devoid of MRP2 inhibition (IC(50) >15 microM). In vivo inhibitory effects of CP-100,356 in rats were examined after coadministration with MDR1 substrate fexofenadine and dual MDR1/BCRP substrate prazosin. Coadministration with increasing doses of CP-100,356 resulted in dramatic increases in systemic exposure of fexofenadine (36- and 80-fold increase in C(max) and AUC at a CP-100,356 dose of 24 mg/kg). Significant differences in prazosin pharmacokinetics were also discernible in CP-100,356-pretreated rats as reflected from a 2.6-fold increase in AUC. Coadministration of CP-100,356 and P4503A substrate midazolam did not result in elevations in systemic exposure of midazolam in the rat. The in vivo methodology should have utility in drug discovery in selective and facile assessment of the role of MDR1 and BCRP efflux transporters in oral absorption of new drug candidates.

  • A rational chemical intervention strategy to circumvent bioactivation liabilities associated with a nonpeptidyl thrombopoietin receptor agonist containing a 2-amino-4-arylthiazole motif.

    Chemical Research in Toxicology (American Chemical Society)

    The current study examined the bioactivation potential of a nonpeptidyl thrombopoietin receptor agonist containing a 2-carboxamido-4-arylthiazole moiety in the core structure. Toxicological risks arising from P450-catalyzed C4-C5 thiazole ring opening in 1 via the epoxidation-->diol sequence were alleviated, since mass spectrometric analysis of human liver microsome and/or hepatocyte incubations of 1 did not reveal the formation of reactive acylthiourea and/or glyoxal metabolites, which are…

    The current study examined the bioactivation potential of a nonpeptidyl thrombopoietin receptor agonist containing a 2-carboxamido-4-arylthiazole moiety in the core structure. Toxicological risks arising from P450-catalyzed C4-C5 thiazole ring opening in 1 via the epoxidation-->diol sequence were alleviated, since mass spectrometric analysis of human liver microsome and/or hepatocyte incubations of 1 did not reveal the formation of reactive acylthiourea and/or glyoxal metabolites, which are prototypic products derived from thiazole ring scission. However, 4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-amine (2), the product of hydrolysis of 1 in human liver microsomes, hepatocytes, and plasma, underwent oxidative bioactivation in human liver microsomes, since trapping studies with glutathione led to the formation of two conjugates derived from the addition of the thiol nucleophile to 2 and a thiazole- S-oxide metabolite of 2. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in both conjugates was the C5 position in the thiazole ring. Based on the structures of the glutathione conjugates, two bioactivation pathways are proposed, one involving beta-elimination of an initially formed hydroxylamine metabolite and the other involving direct two-electron oxidation of the electron-rich 2-aminothiazole system to electrophilic intermediates. This mechanistic insight into the bioactivation process allowed the development of a rational chemical intervention strategy that involved blocking the C5 position with a fluorine atom or replacing the thiazole ring with a 1,2,4-thiadiazole group. These structural changes not only abrogated the bioactivation liability associated with 1 but also resulted in compounds that retained the attractive pharmacological and pharmacokinetic attributes of the prototype agent.

    Other authors
  • NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine.

    Chemical Research in Toxicology

    The primary pathway of clearance of the methylenedioxyphenyl-containing compound and selective serotonin reuptake inhibitor paroxetine in humans involves P450 2D6-mediated demethylenation to a catechol intermediate. The process of demethylenation also results in the mechanism-based inactivation of the P450 isozyme. While the link between P450 2D6 inactivation and pharmacokinetic interactions of paroxetine with P450 2D6 substrates has been firmly established, there is a disconnect in terms of…

    The primary pathway of clearance of the methylenedioxyphenyl-containing compound and selective serotonin reuptake inhibitor paroxetine in humans involves P450 2D6-mediated demethylenation to a catechol intermediate. The process of demethylenation also results in the mechanism-based inactivation of the P450 isozyme. While the link between P450 2D6 inactivation and pharmacokinetic interactions of paroxetine with P450 2D6 substrates has been firmly established, there is a disconnect in terms of paroxetine's excellent safety record despite the potential for bioactivation. In the present study, we have systematically assessed the NADPH-dependent covalent binding of [(3)H]paroxetine to human liver microsomes and S-9 preparations in the absence and presence of cofactors of the various phase II drug-metabolizing enzymes involved in the downstream metabolism/detoxification of the putative paroxetine-catechol intermediate. Incubation of [(3)H]paroxetine with human liver microsomes and S-9 preparations resulted in irreversible binding of radioactive material to macromolecules by a process that was NADPH-dependent. The addition of reduced glutathione (GSH) to the microsomal and S-9 incubations resulted in a dramatic reduction of covalent binding. Following incubations with NADPH- and GSH-supplemented human liver microsomes and S-9, three sulfydryl conjugates with MH(+) ions at 623 Da (GS1), 779 Da (GS2), and 928 Da (GS3), respectively, were detected by LC-MS/MS. The collision-induced dissociation spectra allowed an insight into the structure of the GSH conjugates, based on which, bioactivation pathways were proposed. The formation of GS 1 was consistent with Michael addition of GSH to the quinone derived from two-electron oxidation of paroxetine-catechol. GS 3 was formed by the addition of a second molecule of GSH to the quinone species obtained via the two-electron oxidation of GS 1.

    Other authors
  • Role of transporters in the disposition of the selective phosphodiesterase-4 inhibitor (+)-2-[4-({[2-(benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenoxy]-propionic acid in rat and human.

    Drug Metabolism and Disposition

    The role of transporters in the disposition of (+)-2-[4-({[2-(benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenoxy]-propionic acid (CP-671,305), an orally active inhibitor of phosphodiesterase-4, was examined. In bile duct-exteriorized rats, a 7.4-fold decrease in the half-life of CP-671,305 was observed, implicating enterohepatic recirculation. Statistically significant differences in CP-671,305 pharmacokinetics (clearance and area under the curve) were discernible in…

    The role of transporters in the disposition of (+)-2-[4-({[2-(benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenoxy]-propionic acid (CP-671,305), an orally active inhibitor of phosphodiesterase-4, was examined. In bile duct-exteriorized rats, a 7.4-fold decrease in the half-life of CP-671,305 was observed, implicating enterohepatic recirculation. Statistically significant differences in CP-671,305 pharmacokinetics (clearance and area under the curve) were discernible in cyclosporin A- or rifampicin-pretreated rats. Considering that cyclosporin A and rifampicin inhibit multiple uptake/efflux transporters, the interactions of CP-671,305 with major human hepatic drug transporters, multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2), breast cancer resistant protein (BCRP), and organic anion-transporting polypeptide (OATPs) were evaluated in vitro. CP-671,305 was identified as a substrate of MRP2 and BCRP, but not MDR1. CP-671,305 was a substrate of human OATP2B1 with a high affinity (Km = 4 microM) but not a substrate for human OATP1B1 or OATP1B3. Consistent with these results, examination of hepatobiliary transport of CP-671,305 in hepatocytes indicated active uptake followed by efflux into bile canaliculi. Upon examination as a substrate for major rat hepatic Oatps, CP-671,305 displayed high affinity (Km = 12 microM) for Oatp1a4. The role of rat Mrp2 in the biliary excretion was also examined in Mrp2-deficient rats. The observations that CP-671,305 pharmacokinetics were largely unaltered suggested that compromised biliary clearance of CP-671,305 was compensated by increased urinary clearance. Overall, these studies suggest that hepatic transporters play an important role in the disposition and clearance of CP-671,305 in rat and human, and as such, these studies should aid in the design of clinical drug-drug interaction studies.

    Other authors
  • Genotoxicity of 2-(3-chlorobenzyloxy)-6-(piperazinyl)pyrazine, a novel 5-hydroxytryptamine2c receptor agonist for the treatment of obesity: role of metabolic activation.

    Drug Metabolism and Disposition

    2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT(2C) agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and…

    2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT(2C) agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and TA1537. The increase in reverse mutations was attenuated upon coincubation with methoxylamine and glutathione. The irreversible and concentration-dependent incorporation of radioactivity in calf thymus DNA after incubations with [14C]3 in the presence of rat S9/NADPH suggested that 3 was bioactivated to a reactive intermediate that covalently bound DNA. In vitro metabolism studies on 3 with rat S9/NADPH in the presence of methoxylamine and cyanide led to the detection of amine and cyano conjugates of 3. The mass spectrum of the amine conjugate was consistent with condensation of amine with an aldehyde metabolite derived from hydroxylation of the secondary piperazine nitrogen-alpha-carbon bond. The mass spectrum of the cyano conjugate suggested a bioactivation pathway involving N-hydroxylation of the secondary piperazine nitrogen followed by two-electron oxidation to generate an electrophilic nitrone, which reacted with cyanide. The 3-chlorobenzyl motif in 3 was also bioactivated via initial aromatic ring hydroxylation followed by elimination to a quinone-methide species that reacted with glutathione or with the secondary piperazine ring nitrogen in 3 and its monohydroxylated metabolite(s). The metabolism studies described herein provide a mechanistic basis for the mutagenicity of 3.

    Other authors
  • Mechanism-based inactivation of cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions.

    Current Drug Metabolism

    Cytochrome P450 constitute a superfamily of heme-containing enzymes that catalyze the oxidative biotransformation of structurally diverse xenobiotics including drugs. Inhibition of P450 enzymes is by far the most common mechanism which can lead to DDIs. Covalent modification of P450 enzymes can also lead to hapten formation and can in some cases trigger an autoimmune response resulting in toxicological consequences. Compared to reversible inhibition, irreversible inhibition more frequently…

    Cytochrome P450 constitute a superfamily of heme-containing enzymes that catalyze the oxidative biotransformation of structurally diverse xenobiotics including drugs. Inhibition of P450 enzymes is by far the most common mechanism which can lead to DDIs. Covalent modification of P450 enzymes can also lead to hapten formation and can in some cases trigger an autoimmune response resulting in toxicological consequences. Compared to reversible inhibition, irreversible inhibition more frequently results in unfavorable DDIs as the inactivated P450 enzyme has to be replaced by newly synthesized protein. For these reasons, most drug metabolism groups within pharmaceutical companies have well-established screening paradigms to assess mechanism-based inactivation of major human P450 enzymes by new chemical entities followed by in-depth mechanistic studies to elucidate the mechanism of P450 inactivation when a positive finding is discerned. A deeper understanding of the process leading to enzyme inactivation by drug candidates can lead to rational chemical intervention strategies to circumvent the P450 inactivation/bioactivation liability. Apart from structure-activity relationship studies, methodology to predict the magnitude of in vivo metabolic DDIs using in vitro P450 inactivation data and predicted human pharmacokinetics of the candidate drug also exists and can be utilized to project the extent of clinical DDIs against P450 enzyme-specific substrates. In this review, a comprehensive analysis of the biochemical basis and known structure-activity relationships for P450 inactivation by xenobiotics is described. In addition, the current state-of-the-art of the methodology used in predicting the magnitude of DDIs using in vitro P450 inactivation data and human pharmacokinetic parameters is discussed in detail.

    Other authors
  • Indolyl esters and amides related to indomethacin are selective COX-2 inhibitors.

    Bioorganic Medicinal Chemistry

    Previous studies from our laboratory have revealed that esterification/amidation of the carboxylic acid moiety in the nonsteroidal anti-inflammatory drug, indomethacin, generates potent and selective COX-2 inhibitors. In the present study, a series of reverse ester/amide derivatives were synthesized and evaluated as selective COX-2 inhibitors. Most of the reverse esters/amides displayed time-dependent COX-2 inhibition with IC50 values in the low nanomolar range. Replacement of the…

    Previous studies from our laboratory have revealed that esterification/amidation of the carboxylic acid moiety in the nonsteroidal anti-inflammatory drug, indomethacin, generates potent and selective COX-2 inhibitors. In the present study, a series of reverse ester/amide derivatives were synthesized and evaluated as selective COX-2 inhibitors. Most of the reverse esters/amides displayed time-dependent COX-2 inhibition with IC50 values in the low nanomolar range. Replacement of the 4-chlorobenzoyl group on the indole nitrogen with a 4-bromobenzyl moiety resulted in compounds that retained selective COX-2 inhibitory potency. In addition to inhibiting COX-2 activity in vitro, the reverse esters/amides also inhibited COX-2 activity in the mouse macrophage-like cell line, RAW264.7. Overall, this strategy broadens the scope of our previous methodology of neutralizing the carboxylic acid group in NSAIDs as a means of generating COX-2-selective inhibitors and is potentially applicable to other NSAIDs.

    Other authors
    • Lawrence Marnett
  • A comprehensive listing of bioactivation pathways of organic functional groups.

    Current Drug Metabolism

    The occurrence of idiosyncratic adverse drug reactions during late clinical trials or after a drug has been released can lead to a severe restriction in its use and even in its withdrawal. Metabolic activation of relatively inert functional groups to reactive electrophilic intermediates is considered to be an obligatory event in the etiology of many drug-induced adverse reactions. Therefore, a thorough examination of the biochemical reactivity of functional groups/structural motifs in all new…

    The occurrence of idiosyncratic adverse drug reactions during late clinical trials or after a drug has been released can lead to a severe restriction in its use and even in its withdrawal. Metabolic activation of relatively inert functional groups to reactive electrophilic intermediates is considered to be an obligatory event in the etiology of many drug-induced adverse reactions. Therefore, a thorough examination of the biochemical reactivity of functional groups/structural motifs in all new drug candidates is essential from a safety standpoint. A major theme attempted in this review is the comprehensive cataloging of all of the known bioactivation pathways of functional groups or structural motifs commonly utilized in drug design efforts. Potential strategies in the detection of reactive intermediates in biochemical systems are also discussed. The intention of this review is not to "black list" functional groups or to immediately discard compounds based on their potential to form reactive metabolites, but rather to serve as a resource describing the structural diversity of these functionalities as well as experimental approaches that could be taken to evaluate whether a "structural alert" in a new drug candidate undergoes bioactivation to reactive metabolites.

    Other authors
  • Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4.

    Drug Metabolism and Disposition

    The therapeutic benefits of the antidepressant nefazodone have been hampered by several cases of acute hepatotoxicity/liver failure. Studies were initiated to determine whether nefazodone undergoes bioactivation in human liver microsomes to electrophilic intermediates. Following incubation of nefazodone with microsomes or recombinant P4503A4 in the presence of sulfydryl nucleophiles, conjugates derived from the addition of thiol to a monohydroxylated nefazodone metabolite were observed. Product…

    The therapeutic benefits of the antidepressant nefazodone have been hampered by several cases of acute hepatotoxicity/liver failure. Studies were initiated to determine whether nefazodone undergoes bioactivation in human liver microsomes to electrophilic intermediates. Following incubation of nefazodone with microsomes or recombinant P4503A4 in the presence of sulfydryl nucleophiles, conjugates derived from the addition of thiol to a monohydroxylated nefazodone metabolite were observed. Product ion spectra suggested that hydroxylation and sulfydryl conjugation occurred on the 3-chlorophenylpiperazine-ring, consistent with a bioactivation pathway involving initial formation of p-hydroxynefazodone, followed by its two-electron oxidation to the reactive quinone-imine intermediate. The formation of novel N-dearylated nefazodone metabolites was also discernible in these incubations, and 2-chloro-1,4-benzoquinone, a by-product of N-dearylation, was trapped with glutathione to afford the corresponding hydroquinone-sulfydryl adduct. Nefazodone also displayed NADPH-, time-, and concentration-dependent inactivation of P4503A4 activity, suggesting that reactive metabolites derived from nefazodone bioactivation are capable of covalently modifying P4503A4. A causative role for 2-chloro-1,4-benzoquinone and/or the quinone-imine intermediate(s) in nefazodone hepatotoxicity is speculated. Although the antianxiety agent buspirone, which contains a pyrimidine ring in place of the 3-chlorophenyl-ring, also generated p-hydroxybuspirone in liver microsomes, no sulfydryl conjugates of this metabolite were observed. This finding is consistent with the proposal that two-electron oxidation of p-hydroxybuspirone to the corresponding quinone-imine is less favorable due to differences in the protonation state at physiological pH and due to weaker resonance stabilization of the oxidation products as predicted from ab initio measurements.

    Other authors
  • A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385.

    Journal of Biological Chemistry

    A variety of drugs inhibit the conversion of arachidonic acid to prostaglandin G2 by the cyclooxygenase (COX) activity of prostaglandin endoperoxide synthases. Several modes of inhibitor binding in the COX active site have been described including ion pairing of carboxylic acid containing inhibitors with Arg-120 of COX-1 and COX-2 and insertion of arylsulfonamides and sulfones into the COX-2 side pocket. Recent crystallographic evidence suggests that Tyr-385 and Ser-530 chelate polar or…

    A variety of drugs inhibit the conversion of arachidonic acid to prostaglandin G2 by the cyclooxygenase (COX) activity of prostaglandin endoperoxide synthases. Several modes of inhibitor binding in the COX active site have been described including ion pairing of carboxylic acid containing inhibitors with Arg-120 of COX-1 and COX-2 and insertion of arylsulfonamides and sulfones into the COX-2 side pocket. Recent crystallographic evidence suggests that Tyr-385 and Ser-530 chelate polar or negatively charged groups in arachidonic acid and aspirin. We tested the generality of this binding mode by analyzing the action of a series of COX inhibitors against site-directed mutants of COX-2 bearing changes in Arg-120, Tyr-355, Tyr-348, and Ser-530. Interestingly, diclofenac inhibition was unaffected by the mutation of Arg-120 to alanine but was dramatically attenuated by the S530A mutation. Determination of the crystal structure of a complex of diclofenac with murine COX-2 demonstrates that diclofenac binds to COX-2 in an inverted conformation with its carboxylate group hydrogen-bonded to Tyr-385 and Ser-530. This finding represents the first experimental demonstration that the carboxylate group of an acidic non-steroidal anti-inflammatory drug can bind to a COX enzyme in an orientation that precludes the formation of a salt bridge with Arg-120. Mutagenesis experiments suggest Ser-530 is also important in time-dependent inhibition by nimesulide and piroxicam.

    Other authors
  • Biotransformation reactions of five-membered aromatic heterocyclic rings.

    Chemical Research in Toxicology

    Other authors
  • Amide derivatives of meclofenamic acid as selective cyclooxygenase-2 inhibitors.

    Bioorganic Medicinal Chemistry Letters

    This paper describes SAR studies involved in the transformation of the NSAID meclofenamic acid into potent and selective cyclooxygenase-2 (COX-2) inhibitors via neutralization of the carboxylate moiety in this nonselective COX inhibitor.

    Other authors
    • Lawrence Marnett
  • Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors.

    Chemical Research in Toxicology

    Other authors
  • Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors.

    Journal of Medicinal Chemistry

    Recent studies from our laboratory have shown that derivatization of the carboxylate moiety in substrate analogue inhibitors, such as 5,8,11,14-eicosatetraynoic acid, and in nonsteroidal antiinflammatory drugs (NSAIDs), such as indomethacin and meclofenamic acid, results in the generation of potent and selective cyclooxygenase-2 (COX-2) inhibitors (Kalgutkar et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 925-930). This paper summarizes details of the structure-activity studies involved in the…

    Recent studies from our laboratory have shown that derivatization of the carboxylate moiety in substrate analogue inhibitors, such as 5,8,11,14-eicosatetraynoic acid, and in nonsteroidal antiinflammatory drugs (NSAIDs), such as indomethacin and meclofenamic acid, results in the generation of potent and selective cyclooxygenase-2 (COX-2) inhibitors (Kalgutkar et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 925-930). This paper summarizes details of the structure-activity studies involved in the transformation of the arylacetic acid NSAID, indomethacin, into a COX-2-selective inhibitor. Many of the structurally diverse indomethacin esters and amides inhibited purified human COX-2 with ICo5 values in the low-nanomolar range but did not inhibit ovine COX-1 activity at concentrations as high as 66 microM. Primary and secondary amide analogues of indomethacin were more potent as COX-2 inhibitors than the corresponding tertiary amides. Replacement of the 4-chlorobenzoyl group in indomethacin esters or amides with the 4-bromobenzyl functionality or hydrogen afforded inactive compounds. Likewise, exchanging the 2-methyl group on the indole ring in the ester and amide series with a hydrogen also generated inactive compounds. Inhibition kinetics revealed that indomethacin amides behave as slow, tight-binding inhibitors of COX-2 and that selectivity is a function of the time-dependent step. Conversion of indomethacin into ester and amide derivatives provides a facile strategy for generating highly selective COX-2 inhibitors and eliminating the gastrointestinal side effects of the parent compound.

    Other authors
  • Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors.

    Proceedings of the National Academy of Sciences USA

    All nonsteroidal antiinflammatory drugs (NSAIDs) inhibit the cyclooxygenase (COX) isozymes to different extents, which accounts for their anti-inflammatory and analgesic activities and their gastrointestinal side effects. We have exploited biochemical differences between the two COX enzymes to identify a strategy for converting carboxylate-containing NSAIDs into selective COX-2 inhibitors. Derivatization of the carboxylate moiety in moderately selective COX-1 inhibitors, such as…

    All nonsteroidal antiinflammatory drugs (NSAIDs) inhibit the cyclooxygenase (COX) isozymes to different extents, which accounts for their anti-inflammatory and analgesic activities and their gastrointestinal side effects. We have exploited biochemical differences between the two COX enzymes to identify a strategy for converting carboxylate-containing NSAIDs into selective COX-2 inhibitors. Derivatization of the carboxylate moiety in moderately selective COX-1 inhibitors, such as 5,8,11,14-eicosatetraynoic acid (ETYA) and arylacetic and fenamic acid NSAIDs, exemplified by indomethacin and meclofenamic acid, respectively, generated potent and selective COX-2 inhibitors. In the indomethacin series, esters and primary and secondary amides are superior to tertiary amides as selective inhibitors. Only the amide derivatives of ETYA and meclofenamic acid inhibit COX-2; the esters are either inactive or nonselective. Inhibition kinetics reveal that indomethacin amides behave as slow, tight-binding inhibitors of COX-2 and that selectivity is a function of the time-dependent step. Site-directed mutagenesis of murine COX-2 indicates that the molecular basis for selectivity differs from the parent NSAIDs and from diarylheterocycles. Selectivity arises from novel interactions at the opening and at the apex of the substrate-binding site. Lead compounds in the present study are potent inhibitors of COX-2 activity in cultured inflammatory cells. Furthermore, indomethacin amides are orally active, nonulcerogenic, anti-inflammatory agents in an in vivo model of acute inflammation. Expansion of this approach can be envisioned for the modification of all carboxylic acid-containing NSAIDs into selective COX-2 inhibitors.

    Other authors
    See publication
  • Cyclooxygenase 2 inhibitors: discovery, selectivity and the future.

    Trends in Pharmacological Sciences

    The recent marketing of two selective cyclooxygenase 2 (COX-2) inhibitors climaxes the first phase of an exciting and fast-paced effort to exploit a novel molecular target for nonsteroidal anti-inflammatory drugs (NSAIDs). Much has been written in the lay and scientific press about the potential of COX-2 inhibitors as anti-inflammatory and analgesic agents that lack the gastrointestinal side-effects of traditional NSAIDs. Although research on COX-2 inhibitors has focussed mainly on inflammation…

    The recent marketing of two selective cyclooxygenase 2 (COX-2) inhibitors climaxes the first phase of an exciting and fast-paced effort to exploit a novel molecular target for nonsteroidal anti-inflammatory drugs (NSAIDs). Much has been written in the lay and scientific press about the potential of COX-2 inhibitors as anti-inflammatory and analgesic agents that lack the gastrointestinal side-effects of traditional NSAIDs. Although research on COX-2 inhibitors has focussed mainly on inflammation and pain, experimental and epidemiological data suggest that COX-2 inhibitors could be used in the treatment or prevention of a broader range of diseases. In this review, some key points and unresolved issues related to the discovery of COX-2 inhibitors, the kinetic and structural basis for their selectivity, and possible complications in their development and use will be discussed.

    Other authors
    • Lawrence Marnett
  • Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition.

    Journal of Biological Chemistry

    Other authors
  • Covalent modification of cyclooxygenase-2 (COX-2) by 2-acetoxyphenyl alkyl sulfides, a new class of selective COX-2 inactivators.

    Journal of Medicinal Chemistry (American Chemical Society)

    All of the selective COX-2 inhibitors described to date inhibit the isoform by binding tightly but noncovalently at the substrate binding site. . This paper describes the extensive structure-activity relationship (SAR) studies on the initial lead compound 2-acetoxyphenyl methyl sulfide (36) that led to the discovery of 70. Extension of the S-alkyl chain in 36 with higher alkyl homologues led to significant increases in inhibitory potency. The heptyl chain in 2-acetoxyphenyl heptyl sulfide (46)…

    All of the selective COX-2 inhibitors described to date inhibit the isoform by binding tightly but noncovalently at the substrate binding site. . This paper describes the extensive structure-activity relationship (SAR) studies on the initial lead compound 2-acetoxyphenyl methyl sulfide (36) that led to the discovery of 70. Extension of the S-alkyl chain in 36 with higher alkyl homologues led to significant increases in inhibitory potency. The heptyl chain in 2-acetoxyphenyl heptyl sulfide (46) was optimum for COX-2 inhibitory potency, and introduction of a triple bond in the heptyl chain (compound 70) led to further increments in potency and selectivity. The alkynyl analogues were more potent and selective COX-2 inhibitors than the corresponding alkyl homologues. Sulfides were more potent and selective COX-2 inhibitors than the corresponding sulfoxides or sulfones or other heteroatom-containing compounds. Tryptic digestion and peptide mapping of COX-2 reacted with [1-14C-acetyl]-36 indicated that selective COX-2 inhibition by 36 also resulted in the acetylation of Ser516. That COX-2 inhibition by aspirin resulted from the acetylation of Ser516 was confirmed by tryptic digestion and peptide mapping of COX-2 labeled with [1-14C-acetyl]salicyclic acid. The efficacy of the sulfides in inhibiting COX-2 activity in inflammatory cells, our recent results on the selectivity of 70 in attenuating growth of COX-2-expressing colon cancer cells, and its selectivity for inhibition of COX-2 over COX-1 in vivo indicate that this novel class of covalent modifiers may serve as potential therapeutic agents in inflammatory and proliferative disorders.

    Other authors
    See publication
  • Aspirin-like molecules that covalently inactivate cyclooxygenase-2.

    Science

    Many of aspirin's therapeutic effects arise from its acetylation of cyclooxygenase-2 (COX-2), whereas its antithrombotic and ulcerogenic effects result from its acetylation of COX-1. Here, aspirin-like molecules were designed that preferentially acetylate and irreversibly inactivate COX-2. The most potent of these compounds was o-(acetoxyphenyl)hept-2-ynyl sulfide (APHS). Relative to aspirin, APHS was 60 times as reactive against COX-2 and 100 times as selective for its inhibition; it also…

    Many of aspirin's therapeutic effects arise from its acetylation of cyclooxygenase-2 (COX-2), whereas its antithrombotic and ulcerogenic effects result from its acetylation of COX-1. Here, aspirin-like molecules were designed that preferentially acetylate and irreversibly inactivate COX-2. The most potent of these compounds was o-(acetoxyphenyl)hept-2-ynyl sulfide (APHS). Relative to aspirin, APHS was 60 times as reactive against COX-2 and 100 times as selective for its inhibition; it also inhibited COX-2 in cultured macrophages and colon cancer cells and in the rat air pouch in vivo. Such compounds may lead to the development of aspirin-like drugs for the treatment or prevention of immunological and proliferative diseases without gastrointestinal or hematologic side effects.

    Other authors
    • Scott Rowlinson
    • Lawrence Marnett
    • Karen Seibert
    • Carlos Garner
  • Kinetics of the interaction of nonsteroidal antiinflammatory drugs with prostaglandin endoperoxide synthase-1 studied by limited proteolysis.

    Biochemistry (American Chemical Society)

    Many nonsteroidal antiinflammatory agents (NSAIDs) bind to prostaglandin endoperoxide synthase (PGHS) and induce a conformational change in the PGHS apoprotein that renders it resistant to cleavage by trypsin at Arg277. In the present study, the trypsin protection assay was modified to permit detection of conformational changes at times as short as 5 s after the addition of inhibitor. The kinetics of the induction and reversal of trypsin resistance in apoPGHS-1 by a series of NSAIDs and…

    Many nonsteroidal antiinflammatory agents (NSAIDs) bind to prostaglandin endoperoxide synthase (PGHS) and induce a conformational change in the PGHS apoprotein that renders it resistant to cleavage by trypsin at Arg277. In the present study, the trypsin protection assay was modified to permit detection of conformational changes at times as short as 5 s after the addition of inhibitor. The kinetics of the induction and reversal of trypsin resistance in apoPGHS-1 by a series of NSAIDs and isozyme-specific PGHS-1 and PGHS-2 inhibitors were determined. All compounds induced resistance to trypsin cleavage at a rapid rate. The conformational change induced by competitive inhibitors was reversed on prolonged incubation with trypsin (approximately 5 min). In contrast, the resistance induced by irreversible inhibitors was not lost during a 5 min incubation with trypsin. All of the selective PGHS-2 inhibitors protected against tryptic cleavage of apoPGHS-1 but did not inhibit the protein's cyclooxygenase activity. The results suggest that induction of trypsin resistance is a reflection of the initial association of reversible as well as irreversible inhibitors with the apoprotein.

    Other authors
    • Lawrence Marnett
  • Selective inhibitors of monoamine oxidase (MAO-A and MAO-B) as probes of its catalytic site and mechanism.

    Medicinal Research Reviews

    Other authors
    • Neal Castagnoli, Jr
    • Bernard Testa
  • Design, synthesis, and biochemical evaluation of N-substituted maleimides as inhibitors of prostaglandin endoperoxide synthases.

    Journal of Medicinal Chemistry

    N-(Carboxyalkyl)maleimides are rapid as well as time-dependent inhibitors of prostaglandin endoperoxide synthase (PGHS). The corresponding N-alkylmaleimides were only time-dependent inactivators of PGHS, suggesting that the carboxylate is critical for rapid inhibition. Several N-substituted maleimide analogs containing structural features similar to those of the nonsteroidal anti-inflammatory drug aspirin were synthesized and evaluated as inhibitors of PGHS. Most of the aspirin-like maleimides…

    N-(Carboxyalkyl)maleimides are rapid as well as time-dependent inhibitors of prostaglandin endoperoxide synthase (PGHS). The corresponding N-alkylmaleimides were only time-dependent inactivators of PGHS, suggesting that the carboxylate is critical for rapid inhibition. Several N-substituted maleimide analogs containing structural features similar to those of the nonsteroidal anti-inflammatory drug aspirin were synthesized and evaluated as inhibitors of PGHS. Most of the aspirin-like maleimides inactivated the cyclooxygenase activity of purified ovine PGHS-1 in a time- and concentration-dependent manner similar to that of aspirin. The peroxidase activity of PGHS was also inactivated by the maleimide analogs. Incubation of apoPGHS-1 with 2 equiv of N-(carboxyheptyl)[3,4-14C]maleimide led to the incorporation of radioactivity in the protein, but no adduct was detected by reversed-phase HPLC, suggesting that it was unstable to the chromatographic conditions. ApoPGHS-1, inhibited by N-(carboxyheptyl)maleimide, did not display regeneration of enzyme activity, but addition of hematin to the inhibited apoenzyme led to spontaneous recovery of about 50% of cyclooxygenase activity. These results suggest that addition of heme leads to a conformational change in the protein which increases the susceptibility of the adduct toward hydrolytic cleavage. ApoPGHS-1, pretreated with N-(carboxyheptyl)maleimide, was resistant to trypsin cleavage, suggesting that the carboxylate functionality of the maleimide binds in the cyclooxygenase channel. A model for the interaction of N-(carboxyheptyl)maleimide in the cyclooxygenase active site is proposed.

    Other authors
    • Lawrence Marnett
  • Mechanistic studies on the monoamine oxidase B catalyzed oxidation of 1,4-disubstituted tetrahydropyridines.

    Chemical Research in Toxicology

    Other authors
    • Simon Kuttab
    • Neal Castagnoli Jr
  • Rapid inactivation of prostaglandin endoperoxide synthases by N-(carboxyalkyl)maleimides.

    Biochemistry (American Chemical Society)

    N-(Carboxyalkyl)maleimides were synthesized as potential inhibitors of prostaglandin endoperoxide synthase (PGHS). Inactivation of the cyclooxygenase and peroxidase activities of PGHS occurred in a biphasic manner with extremely rapid inactivation followed by slow, time-dependent inactivation. The carboxylic acid moiety was required for rapid inactivation. Optimal inhibition was observed with N-(carboxyheptyl)maleimide, which inhibited the cyclooxygenase activity of ovine PGHS-1 with an IC50 of…

    N-(Carboxyalkyl)maleimides were synthesized as potential inhibitors of prostaglandin endoperoxide synthase (PGHS). Inactivation of the cyclooxygenase and peroxidase activities of PGHS occurred in a biphasic manner with extremely rapid inactivation followed by slow, time-dependent inactivation. The carboxylic acid moiety was required for rapid inactivation. Optimal inhibition was observed with N-(carboxyheptyl)maleimide, which inhibited the cyclooxygenase activity of ovine PGHS-1 with an IC50 of 0.1 microM and the peroxidase activity with an IC50 of 3 microM. Inactivation of peroxidase activity was not prevented by pretreating the enzyme with the cyclooxygenase inhibitor indomethacin. N-(Carboxyheptyl)-succinimide inhibited neither enzyme activity, suggesting that covalent modification is critical for rapid as well as time-dependent inactivation. Shortening or increasing the alkyl chain by one methylene unit drastically reduced inhibitory potency. N-(Carboxyalkyl)maleimides also instantaneously inactivated the inducible form of PGHS (PGHS-2) from mouse and human sources but with higher IC50's (4.5 and 14 microM, respectively). N-(Carboxyheptyl)maleimide is the most potent covalent inactivator of PGHS yet described with an inhibitory potency 3-5 orders of magnitude greater than aspirin.

    Other authors
    • Lawrence Marnett
  • Novel 4-(aryloxy)tetrahydropyridine analogs of MPTP as monoamine oxidase A and B substrates.

    Journal of Medicinal Chemistry

    The exceptionally good monoamine oxidase (MAO) substrate properties of several 4-(arylmethyl)-1-methyl-1,2,3,6-tetrahydropyridine derivatives related to the neurotoxin MPTP have prompted studies to evaluate the corresponding properties of tetrahydropyridine derivatives bearing heteroatom-linked groups at C-4. The expected dihydropyridinium metabolites generated from these MAO-A- and MAO-B-catalyzed oxidations of the 4-(aryloxy)tetrahydropyridine analogs were found to undergo rapid hydrolytic…

    The exceptionally good monoamine oxidase (MAO) substrate properties of several 4-(arylmethyl)-1-methyl-1,2,3,6-tetrahydropyridine derivatives related to the neurotoxin MPTP have prompted studies to evaluate the corresponding properties of tetrahydropyridine derivatives bearing heteroatom-linked groups at C-4. The expected dihydropyridinium metabolites generated from these MAO-A- and MAO-B-catalyzed oxidations of the 4-(aryloxy)tetrahydropyridine analogs were found to undergo rapid hydrolytic cleavage to yield the corresponding arenol and 1-methyl-2,3-dihydro-4-pyridone, a species that could be monitored spectrophotometrically. We have exploited this reaction sequence to probe the active sites of beef liver MAO-B and human placental MAO-A with a variety of 4-(aryloxy)-1-methyl-1,2,3,6-tetrahydropyridine derivatives. The results are discussed in relationship to recently published reports describing the MAO-A vs MAO-B selectivity of various 4-(arylmethyl)tetrahydropyridine derivatives.

    Other authors
  • Synthesis of novel MPTP analogs as potential monoamine oxidase B (MAO-B) inhibitors.

    Journal of Medicinal Chemistry

    The nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetahydropyridine (MPTP) is an excellent substrate and a weak inactivator of the flavoenzyme monoamine oxidase B (MAO-B). In an attempt to develop novel mechanism-based inactivators of MAO-B, we have synthesized analogs of MPTP bearing a variety of functional groups at either the N or the C(4) position and have examined their interactions with a purified MAO-B preparation isolated from beef liver. The substituents selected include allyl…

    The nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetahydropyridine (MPTP) is an excellent substrate and a weak inactivator of the flavoenzyme monoamine oxidase B (MAO-B). In an attempt to develop novel mechanism-based inactivators of MAO-B, we have synthesized analogs of MPTP bearing a variety of functional groups at either the N or the C(4) position and have examined their interactions with a purified MAO-B preparation isolated from beef liver. The substituents selected include allyl, propargyl, ethenyl, ethynyl, and cyclobutyl, that is, functionalities which were considered potential sources of enzyme generated electrophilic or radical intermediates that might alkylate and inactivate the enzyme. None of the C(4)-substituted compounds displayed significant enzyme inhibitor properties although some proved to be good substrates. In the N-substituted MPTP series only the 4-phenyl-1-propargyl analog was a good inhibitor. The time- and concentration-dependent inhibition of MAO-B displayed by this compound is consistent with a mechanism-based inactivation pathway and the catalytic mechanism currently held for monoamine oxidases. The results of these studies provide additional insights into the steric features of the active site of MAO-B and predict that the area in which the C(4) substituent of the tetrahydropyridine ring resides lacks a reactive nucleophilic group.

    Other authors
    • Neal Castagnoli Jr
  • Immune-mediated agranulocytosis caused by the cocaine adulterant levamisole: a case for reactive metabolite(s) involvement.

    Drug Metabolism and Disposition

    The United States Public Health Service Administration is alerting medical professionals that a substantial percentage of cocaine imported into the United States is adulterated with levamisole, a veterinary pharmaceutical that can cause blood cell disorders such as severe neutropenia and agranulocytosis. Levamisole was previously approved in combination with fluorouracil for the treatment of colon cancer; however, the drug was withdrawn from the U.S. market in 2000 because of the frequent…

    The United States Public Health Service Administration is alerting medical professionals that a substantial percentage of cocaine imported into the United States is adulterated with levamisole, a veterinary pharmaceutical that can cause blood cell disorders such as severe neutropenia and agranulocytosis. Levamisole was previously approved in combination with fluorouracil for the treatment of colon cancer; however, the drug was withdrawn from the U.S. market in 2000 because of the frequent occurrence of agranulocytosis. The detection of autoantibodies such as antithrombin (lupus anticoagulant) and an increased risk of agranulocytosis in patients carrying the human leukocyte antigen B27 genotype suggest that toxicity is immune-mediated. In this perspective, we provide an historical account of the levamisole/cocaine story as it first surfaced in 2008, including a succinct review of levamisole pharmacology, pharmacokinetics, and preclinical/clinical evidence for levamisole-induced agranulocytosis. Based on the available information on levamisole metabolism in humans, we propose that reactive metabolite formation is the rate-limiting step in the etiology of agranulocytosis associated with levamisole, in a manner similar to other drugs (e.g., propylthiouracil, methimazole, captopril, etc.) associated with blood dyscrasias. Finally, considering the toxicity associated with levamisole, we propose that the 2,3,5,6-tetrahydroimidazo[2,1-b]thiazole scaffold found in levamisole be categorized as a new structural alert, which is to be avoided in drug design.

    Other authors

Patents

  • Conversion of COX Inhibition Compounds that are not Selective for COX-2 Inhibition into Compounds that are Selective for COX-2 Inhibition

    Issued US 6,762,182

    Other inventors
    • Lawrence Marnett
  • Novel Esters that Are Derived from Indolealkanols and Novel Amides that Are Derived from Indolealkylamides and the Esters and the Amides are Selective COX-2 Inhibitors

    Issued US 6,306,890

    Other inventors
    • Lawrence Marnett
  • Selective Inhibitors of Prostaglandin Endoperoxide Synthase-2

    Issued US 5,973,191

    Other inventors
    • Lawrence Marnett
  • Amide Derivatives for Antiangiogenic or Antitumorigenic Use

    Issued US 6,207,700

    Other inventors
    • Lawrence Marnett
  • Novel Compounds for Inhibition of Cyclooxygenase Activity

    Issued US 5,475,021

    Other inventors
    • Lawrence Marnett
  • INDOLE AND INDAZOLE COMPOUNDS THAT ACTIVATE AMPK

    Filed US WO/2016/092413

    The present invention relates to indole and indazole compounds of Formula (I) Formula (I) that activate 5' adenosine monophosphate-activated protein kinase (AMPK). The invention also encompasses pharmaceutical compositions containing these compounds and methods for treating or preventing diseases, conditions, or disorders ameliorated by activation of AMPK.

    Other inventors
    See patent

Recommendations received

More activity by Amit

View Amit’s full profile

  • See who you know in common
  • Get introduced
  • Contact Amit directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Amit Kalgutkar