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1 Introduction

Weighted finite automata (WFA) are finite automata whose transitions and states are
augmented with some weights, elements of a semiring. A WFA induces a function over
strings. The value it assigns to an input string is the semiring sum of the weights of
all paths labeled with that string, where the weight of a path is obtained by taking the
semiring product of the weights of its constituent transitions, as well as those of its
origin and destination states.

The mathematical theory behind WFAs, that of rational power series, has been
extensively studied in the past [26,52,40,16] and has been more recently the topic
of a dedicated handbook [23]. WFAs are widely used in modern applications, per-
haps most prominently in image processing and speech recognition where the termi-
nology of weighted automata seems to have been first introduced and made popular
[34,43,49,41,44], in several other speech processing applications such as speech syn-
thesis [55,1], in phonological and morphological rule compilation [35,36,47], in parsing
[45], bioinformatics [25,2], sequence modeling and prediction [22], formal verification
[3], in optical character recognition [18], and in many other areas.

These applications, as well as a number of theoretical questions, have strongly mo-
tivated the problem of learning WFAs, that is that of finding a WFA closely estimating
a semiring-valued target function, using for training a finite sample of strings labeled
with their target values. This problem has a rich history since its simpler instances date
back to the origins of computer science. We will therefore discuss only briefly some of
the key results of the literature.

A special instance of this problem is that of learning (unweighted) finite automata,
which coincide with WFAs defined over the Boolean semiring. A series of negative re-
sults are known for this problem when the target itself is a finite automaton and when the
complexity criterion used is the size of the automaton learned. In particular, the prob-
lem of finding a consistent deterministic finite automaton (DFA) of minimum size was
shown to be NP-hard by Gold [29]. This result was later extended by Angluin [4]. Pitt
and Warmuth [50] further strengthened these results by showing that even an approx-
imation within a polynomial function of the size of the smallest consistent automaton
is NP-hard. Their hardness results apply also to the case where prediction is made us-
ing non-deterministic finite automata (NFA) (see also [21]). Kearns and Valiant [37]
presented for the same problem hardness results of a different nature relying on crypto-
graphic assumptions. Their results imply that no polynomial-time algorithm can learn



consistent NFAs polynomial in the size of the smallest DFA from a finite sample of ac-
cepted and rejected strings if any of the generally accepted cryptographic assumptions
holds, for example if RSA public key cryptosystem is secure.

These results imply the computational intractability of the general problem of pas-
sively learning finite automata for several learning models, including the mistake bound
model of Haussler et al. [31] or the PAC-learning model of Valiant [56]. In contrast, an
active model of learning automata was introduced by Angluin [4,5], where the learner
can make membership and equivalence queries. For this model, it was shown that finite
automata can be learned in time polynomial in the size of the minimal automaton and
that of the longest counter-example [4] (see also [38] and [46]).

Fewer results have been reported in the literature for the general case of learning
WFAs over a non-Boolean semiring. Bergadano et al. [15] extended the positive result
of [4] in the scenario where membership and equivalence queries can be made, to the
problem of learning WFAs defined over any field. Using the relationship between the
size of a minimal weighted automaton over a field and the rank of the corresponding
Hankel matrix, the learnability of many other concepts classes such as disjoint DNF
can be shown [13]. In the passive setting, the problem of learning a probabilistic WFA
using a finite sample drawn according to the same distribution has been the subject of
a series of publications in recent years using a spectral method, starting with the work
of Hsu et al. [32] for learning hidden Markov models (HMMs). The main technique
used in these publications consists of a singular value decomposition (SVD) of a Han-
kel matrix. Balle and Mohri [11] further showed that spectral methods combined with a
constrained matrix completion algorithm can be used to learn arbitrary WFAs (not nec-
essarily probabilistic) from finite samples drawn according to a distribution unrelated
to the target WFA.

This paper surveys a number of key theoretical results and algorithms for learning
WFAs. In Section 2, we introduce the main definitions and notation used throughout
the paper. The notion of Hankel matrix turns out to play a key role in the definition
of several learning algorithms for WFAs. In Section 3, we discuss several important
properties of Hankel matrices and their use in the reconstruction of WFAs. In Section 4,
we use these results to describe three algorithms for learning WFAs, as well as their
theoretical guarantees.

2 Definitions and Properties

In this section, we briefly introduce some basic notions and notation related to semirings
and weighted automata needed for the discussion in the following sections.

2.1 Semirings

A weighted finite automaton (WFA) A is a finite automaton whose transitions and states
carry some weights. For various operations to be well defined, the weights must belong
to a semiring, that is a ring that may lack negation. More formally, (S,⊕,⊗, 0, 1) is a
semiring if (S,⊕, 0) is a commutative monoid with identity element 0, (S,⊗, 1) is a



monoid with identity element 1,⊗ distributes over⊕, and 0 is an annihilator for⊗, that
is a⊗ 0 = 0⊗ a = 0 for all a ∈ S.

As an example, (R+∪{+∞},+,×, 0, 1) is a semiring called the probability semir-
ing. The semiring isomorphic to the probability semiring via the negative log is the sys-
tem (R∪{−∞,+∞},⊕log,+,+∞, 0), where⊕log is defined by x⊕logy = − log(e−x+
e−y); it is called the log semiring. The semiring derived from the log semiring via the
Viterbi approximation is the system (R ∪ {−∞,+∞},min,+,+∞, 0) and is called
the tropical semiring. It is the familiar semiring of shortest-paths algorithms.

A semiring is said to be commutative when the multiplicative operation ⊗ is com-
mutative. It is said to be idempotent if x ⊕ x = x for all x ∈ S. The Boolean semiring
and the tropical semiring are idempotent.

2.2 Weighted Automata

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗ and by ε the
empty string for which |ε| = 0.

The second operation of a semiring is used to compute the weight of a path by
taking the ⊗-product of the weights of its constituent transitions. The first operation is
used to compute the weight of any string x, by taking the ⊕-sum of the weights of all
paths labeled with x.

For a WFA A defined over a semiring (S,⊕,⊗, 0, 1), we denote by QA its finite set
of states and byEA its finite set of transitions, which are elements ofQA×Σ×S×QA.4

We will also denote by αA ∈ SQA the vector of initial weights, by βA ∈ SQA the
vector of final weights, and by wA[e] ∈ S the weight of a transition e ∈ EA. More
generally, we denote by wA[π] the weight of a path π = e1 · · · en of A which is defined
by the ⊗-product of the transitions weights: wA[π] = wA[e1]⊗ · · · ⊗ wA[en]. For any
path π, we also denote by orig[π] its origin state and by dest[π] its destination state.

It is sometimes convenient to define the set of initial states IA = {q ∈ QA : αA[q] 6=
0} and similarly the set of final states FA = {q ∈ QA : βA[q] 6= 0}. A path from IA to
FA is then said to be an accepting path.

A WFA A over an alphabet Σ defines a function mapping the set of strings Σ∗ to S
that is abusively also denoted by A and defined as follows:

∀x ∈ Σ∗, A(x) =
⊕

π∈PA(x)

(
αA[orig[π]]⊗ wA[π]⊗ βA[dest[π]]

)
,

where PA(x) denotes the (finite) set of paths in A labeled with x. By convention,
A(x) = 0 when P (x) = ∅.

For any a ∈ Σ, let Aa ∈ SQA×QA be the matrix [Aa]pq = ⊕e∈PA(p,a,q)wA[e],
where PA(p, a, q) is the set of transitions labeled with a from p to q. Then, (2.2) can be
equivalently written as follows in terms of matrices with entries in S:

∀x = x1 · · ·xk ∈ Σ∗, A(x) = α>AAx1 · · ·Axk
βA.

4 All of our results can be straightforwardly extended to the case where EA is a multiset, thereby
allowing multiple transitions between the same two states with the same labels and weights.
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αA =

13
4

 Aa =

0 0 3
0 0 3
1 0 0


βA =

21
1

 Ab =

0 1 0
2 0 0
0 0 4


(a) (b)

Fig. 1. (a) Example of WFA A. Within each circle, the first number indicates the state number,
the second after the slash separator the initial weight and the third the final weight. In particular,
A(ab) = 1× 3× 4× 1 + 3× 3× 4× 1 + 4× 1× 1× 1. (b) Corresponding initial vector αA,
final vector βA, and transition matrices Aa and Ab.

This is similar to the linear representation of recognizable formal power series [52,40,16].
Figure 1 illustrates these definitions with a specific example of WFA. The size of a WFA
is denoted by |A| and defined as the sum of the number of states and the number of
transitions of A: |A| = |QA|+ |EA|. In the absence of any ambiguity, we will drop all
A-subscripts in the definitions just presented.

3 Hankel Matrices and WFA Reconstruction Algorithms

A key algebraic tool used in the design of the learning algorithms we will present is
the notion of Hankel matrix. Thus, in this section, we present an extensive analysis of
Hankel matrices and their properties. We will show how sufficiently informative finite
sub-blocks of the Hankel matrix of a WFA can be used to reconstruct a WFA.

From here on, we will assume that the semiring S is in fact a field. This enables us to
define the rank of a matrix with entries in S and devise effective algorithms for solving
linear systems with unknowns and coefficients in S. We note, however, that some of the
results stated in this section can be extended to rings.

3.1 Definitions

Let H ∈ SΣ∗×Σ∗ be an infinite matrix with rows and columns indexed by strings in
Σ∗. We denote by H(u, v) its entry with row index u ∈ Σ∗ and column index v ∈ Σ∗.
The following definitions are essential for the rest of the paper.

Definition 1 (Hankel matrix). We will say that H is a Hankel matrix if H(u, v) =
H(u′, v′) for all u, u, v, v′ ∈ Σ∗ such that uv = u′v′ and will denote by rank(H) the
rank of H.

Definition 2 (Hankel matrix of a function). The Hankel matrix Hf of a function
f : Σ∗ → S (or formal series over S) is the matrix defined by Hf (u, v) = f(uv),
for all u, v ∈ Σ∗. Conversely, any Hankel matrix H defines a function f : Σ∗ → S by
setting f(u) = H(u, ε) for all u ∈ Σ∗ and thus H = Hf .



3.2 Hankel Matrices of Rational Functions

A function f : Σ∗ → S is said to be rational when it can be represented by a WFA A,
that is when f(x) = A(x) for all x ∈ Σ∗ [52,40,16]. The following theorem of Fliess
[28] (see also [20]) provides an important characterization of rational functions in terms
of the finiteness of rank(Hf ).

Theorem 1 (Fliess [28]). Let S be a field. Then, the rank of the Hankel matrix Hf

associated to a function f : Σ∗ → S is finite if and only if f is rational. In that case,
there exists a WFA A representing f with rank(Hf ) states and no WFA representing f
admits fewer states.

Thus, when rank(Hf ) < +∞, a WFA representing f with rank(Hf ) states (|QA| =
rank(HA)) is minimal. Note that this minimality is defined only in terms of the number
of states, unlike the notion of minimal deterministic WFA [41,42]. In fact, such minimal
WFAs often have a large number of transitions.

Proof. Suppose first that there exists a WFA A representing f . Then, for any u, v ∈ Σ∗,
we can write

f(uv) = A(uv) = (α>AAu)(AvβA) . (1)

Observe that α>AAu is a row vector in S1×QA and AvβA a column vector in SQA×1.
Let P be the matrix in SΣ∗×QA defined by PA(u, ·) = α>AAu for all u ∈ Σ∗ and
SA ∈ SΣ∗×QA the matrix defined by SA(v, ·) = (AvβA)> for all v ∈ Σ∗. Then, in
view of (1), for all u, v ∈ Σ∗,

f(uv) = (α>AAu)(AvβA) = (PAS
>
A)(u, v) .

This proves that Hf = PAS
>
A. Since PA and SA are in SΣ∗×QA , the rank of Hf is

upper bounded by |QA|, the number of states of A, and is therefore finite.
Assume now that rank(Hf ) = n < +∞. For any v ∈ Σ∗, we denote by Hf (·, v)

the column of Hf indexed by v. Let (Hf (·, v1), . . . ,Hf (·, vn)) be a basis for all
columns. Then, there exist β1, . . . , βn ∈ S such that the column Hf (·, ε) can be ex-
pressed as Hf (·, ε) =

∑n
i=1 βiHf (·, vi). Since for all w ∈ Σ∗, f(w) = H(ε, w) =

H(w, ε) =
∑n
i=1 βiHf (w, vi), this implies that f =

∑n
i=1 βiHf (·, vi). Now, for all

i ∈ [1, n] and a ∈ Σ, the column Hf (·, avi) can also be expressed in terms of the
basis: there exist (γaji) such that Hf (·, avi) =

∑n
j=1 γ

a
jiHf (·, vj). Let Aa be the

matrix defined by (Aa)ji = (γaji). Then, we can show by induction on the length
of w that for all w = a1 · · · ak ∈ Σ∗, Hf (·, wvi) =

∑n
j=1(Aw)jiHf (·, vj), where

Aw = Aa1 · · ·Aak . Indeed, if the equality holds for w1 and w2, then for w = w1w2

and for all u ∈ Σ∗ we have Hf (u,wvi) = Hf (uw1, w2vi) and:

Hf (uw1, w2vi) =

n∑
j=1

(Aw2
)jiHf (uw1, vj) =

n∑
j=1

(Aw2
)jiHf (u,w1vj)

=

n∑
j=1

(Aw2
)ji

n∑
k=1

(Aw1
)kjHf (u, vk) =

n∑
k=1

(Aw1
Aw2

)kiHf (u, vk) .
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(a) (b)

Fig. 2. Illustration of standardization. (a) WFA A defined over the field (R,+,×, 0, 1). (b) WFA
B obtained by standardization of A. In this instance, the first stage of standardization leaves the
WFA unchanged. In the second stage, state 3 is eliminated since it is a linear combination of
states 1 and 2 in the following sense: let f3 be the function defined by setting state 3 to be the
only initial state with initial weight 1, and similarly with states 2 and 3, then, f3 = f1 − f2.

Thus, for any w = a1 · · · ak ∈ Σ∗,

f(w) =

n∑
i=1

βiHf (ε, wvi) =

n∑
i=1

βi

n∑
j=1

(Aw)jiHf (ε, vj) = α>Aa1 · · ·Aakβ ,

where αj = Hf (ε, vj) and βj = βj for all j ∈ [1, n]. This proves that f can be
represented by a WFA with n = rank(Hf ) states. ut

3.3 Standardization of WFAs

Theorem 1 proves the existence of a minimal WFA for the representation of a rational
function f . In this section, we briefly describe an algorithm for computing a minimal
WFA B from an input WFA A representing f . The first algorithm for this problem is
due to Schützenberger [54] (see also [53]) and is known as a standardization of the
representation of the linear representation of a rational power series. A more efficient
version of this algorithm was later given by Cardon and Crochemore [19]. Here, we
give a brief description of that algorithm.

The algorithm consists of first finding a basis (v1, . . . ,vm) of row vectors in S1×QA

for the vector space generated by {α>AAw : w ∈ Σ∗} such that for any j ∈ [1,m]
and a ∈ Σ, vjAa is in span(v1, . . . ,vm). The basis can be constructed incremen-
tally by starting with v1 = α>A and by augmenting the current sequence of vectors
(v1, . . . ,vt) as follows. For any j ∈ [1, t] and a ∈ Σ, the vector w is chosen in
span(v1, . . . ,vm,vjAa) such that if vjAa is linearly dependent of (v1, . . . ,vt), then
w = 0; otherwise, such that (v1, . . . ,vt,w) is triangular modulo the order of com-
ponents and vt+1 is set to w. Additionally, the components of vjAa are computed
with respect to (v1, . . . ,vt,w) when w 6= 0, with respect to (v1, . . . ,vt) otherwise.
Testing the dependency of vjAa with respect to (v1, . . . ,vt) and determining w such
that (v1, . . . ,vt,w) be triangular in the independent case can be done as in Gaussian
elimination. This helps define a WFA B′ equivalent to A and whose number of states
is dim(span({α>AAw : w ∈ Σ∗})) = dim(span({α>B′B

′
w : w ∈ Σ∗})). The compo-

nents of vjAa computed by the algorithm help define the transitions of B′. The time



complexity of the algorithm is in O(|Σ||QA|3) semiring operations since at each itera-
tion, the complexity of determining w is in O(|Σ||QA|2).

The second stage of the algorithm is symmetric. It consists of starting with B′ and
constructing a WFA B whose number of states is dim(span({B′wβB′ : w ∈ Σ∗})) =
dim(span({BwβB : w ∈ Σ∗})). The second stage therefore coincides with the first
stage if we first reverse the WFA B′ and permute αB′ and βB′ . Since |QAB

′| ≤ |QA|,
the overall time complexity of the algorithm is in O(|Σ||QA|3).

The two consecutive stages guarantee that the resulting WFA B is minimal.

3.4 Hankel Masks and Bases

A Hankel basis for an infinite Hankel matrix with finite rank essentially identifies a
finite sub-block of that matrix which contains as much information as the infinite matrix
itself. The existence of such bases is paramount for the design of learning algorithms
for WFAs. Here, we will prove the existence of Hankel bases, provide bounds on their
sizes, and briefly discuss the problem of finding one in practice. We start by giving
several definitions.

Definition 3 (Hankel Mask). Let P,S ⊆ Σ∗ be two subsets of the set of all strings.
Then, the pair B = (P,S) is called a Hankel mask. The elements of P are called the
prefixes and those of S the suffixes of the mask.

Definition 4 (Hankel sub-block). Let H ∈ SΣ∗×Σ∗ be a Hankel matrix. Given a Han-
kel mask B = (P,S), we write HB ∈ SP×S to denote the Hankel sub-block of H with
rows indexed by elements of P and suffixes indexed by those of S. Thus, for all u ∈ P
and v ∈ S we have HB(u, v) = H(u, v).

Observe that HB inherits from H the Hankel property. Furthermore, since HB is a sub-
block of H, we always have rank(HB) ≤ rank(H). This motivates our next definition.

Definition 5 (Hankel basis). We say that the Hankel mask B = (P,S) is a Hankel
basis for H if rank(HB) = rank(H).

Since the rank of a matrix is upper bounded by its dimensions, all Hankel masks sat-
isfy rank(HB) ≤ min{|P|, |S|}. The next result is an immediate consequence of the
definition of the rank of a Hankel matrix indicating that this bound is attainable.

Proposition 1. Let H be a Hankel matrix with rank(H) = n. Then there exists a
Hankel basis B = (P,S) for H with |P| = |S| = n.

Definition 6 (Prefix-closed and suffix-closed sets). A subsetW ⊆ Σ∗ is prefix-closed
if w = uv ∈ W implies u ∈ W . Similarly,W ⊆ Σ∗ is suffix-closed if w = uv ∈ W
implies v ∈ W . Note that if W is either prefix-closed or suffix-closed, then it must
contain ε.

The standardization procedure for WFA described in Section 3.3 provides further
information about the structure of minimal Hankel bases.



Proposition 2. Let H be a Hankel matrix with rank(H) = n. Then, there exists a
Hankel basis B = (P,S) for H with |P| = |S| = n, where P is prefix-closed and S is
suffix-closed.

Note that, given a string x ∈ Σ∗, there are exactly |x| + 1 decompositions x = uv
with u, v ∈ Σ∗. A direct consequence of this fact is that if W ⊆ Σ∗ is prefix-closed
and has |W| = n, then |w| < n for every w ∈ W . The same holds for suffix-closed
sets. When combined with the previous proposition, this observation yields a bound on
how far in Σ∗ one needs to look in order to find a Hankel basis for a Hankel matrix H
with rank n.

Corollary 1. Let H be Hankel with rank(H) = n. Then B = (Σ<n, Σ<n) is a Hankel
basis for H.

3.5 WFA Reconstruction from Complete Minimal Masks

In this section, we describe the class of complete minimal Hankel masks, which can
be used to specify the information needed to solve a WFA reconstruction problem via
the Gaussian elimination algorithm in an arbitrary field. We describe the reconstruction
algorithm and show that if the given mask is a Hankel basis for some Hankel matrix
Hf , then the algorithm will reconstruct a minimal WFA computing f .

Definition 7 (Hankel sub-blocks Ha and HΣ). Let B = (P,S) be a Hankel mask
in Σ∗. For every symbol a ∈ Σ, we define the Hankel mask Ba = (Pa,S), where
Pa = {ua : u ∈ P}. Given a Hankel matrix H, we will use the shorthand Ha =
HBa

∈ SP×S . Note the entries of Ha satisfy Ha(u, v) = H(ua, v) for every u ∈ P and
v ∈ S. We denote by HΣ the block-matrix obtained by stacking together the matrices
Ha for all a ∈ Σ, that is H>Σ = [H>a1 · · · H

>
ar ] if Σ = {a1, . . . , ar}.

Definition 8 (Complete and minimal Hankel masks). A Hankel mask B = (P,S) is
said to be complete for a Hankel matrix H if ε ∈ P ∩ S and rank([H>B | H>Σ ]) =
rank(H>B ). A complete Hankel mask B is minimal if rank(HB) = |P|. Note this last
condition implies |P| ≤ |S|.

We now proceed to describe a WFA reconstruction algorithm that takes as input a
complete minimal Hankel mask B = (P,S) for a Hankel matrix H and the correspond-
ing Hankel sub-blocks HB and HΣ , and returns a WFA A with k = |P| states. Let us
write P = {u1, . . . , uk} and S = {v1, . . . , vk′} with u1 = v1 = ε. First, let α>A =

[1, 0, . . . , 0] ∈ Sk and β>A = [HB(u1, ε), . . . ,HB(uk, ε)] = (HB(·, ε))>. Second, note
that since B is complete and minimal we have rank([H>B | H>a ]) = rank(H>B ) = k
for every a ∈ Σ. Thus, by the Rouché–Capelli theorem, for every a ∈ Σ there exists a
unique Aa ∈ Sk×k such that AaHB = Ha. Using the Gaussian elimination algorithm,
each of these systems of equations can be solved in O(k2(k′ + k)) arithmetic opera-
tions in S. Thus, the arithmetic complexity of reconstructing a WFA A with |P| states
from a complete minimal basis B = (P,S) is in O(|Σ||P|2|S|) [30]. If, in addition to
being complete and minimal, the mask B is a Hankel basis for Hf , the above procedure
recovers a minimal WFA computing f .



Theorem 2. If B is a complete minimal Hankel basis for Hf , then the reconstructed
WFA A computes f and is minimal.

Proof. Let A′ be a minimal WFA computing f . Recall that A′ induces a rank factor-
ization Hf = PA′S

>
A′ , which, when restricted to the Hankel basis B yields a rank fac-

torization HB = P′S′
> and associated factorizations Ha = P′A′aS

′> for all a ∈ Σ.
From these, using the fact that the transition weights of A satisfy AaHB = Ha we
get AaP

′S′
>

= P′A′aS
′>. Since P′ is invertible and S′ has full column rank, this

last equation implies Aa = P′A′aP
′−1. A similar argument with the initial and final

weights shows that α = P′
−1

α and β = P′β. Therefore, we see that A and A′ com-
pute the same function, and in particular A computes f . Minimality is immediate by
observing that A has |QA| = rank(HB) = rank(Hf ) states. ut

If the Hankel mask B = (P,S) is complete and minimal but not necessarily a Han-
kel basis, then the function computed by A will not agree with f everywhere. However,
the next result shows that if P is prefix-free and S is suffix-free, then A will agree with
f on all strings in P({ε} ∪Σ)S.

Theorem 3. Let B = (P,S) be a complete minimal Hankel mask for Hf . Suppose that
P is prefix-closed and S is suffix-closed. Then, the WFA A reconstructed from HB and
HΣ satisfies f(uv) = A(uv) and f(uav) = A(uav) for every u ∈ P , v ∈ S, and
a ∈ Σ.

Proof. Let k = rank(HB) = |P| and P = {u1, . . . , uk}with u1 = ε and |ui| ≤ |ui+1|
for all i. Let HA = PAS

>
A be the factorization induced by A. Let us write PP ∈ SP×k

for the sub-block of PA containing the rows indexed by prefixes in P . We claim that
PP = I is the identity matrix. To see this, we will show that for 1 ≤ i ≤ k we have
PP(ui, ·) = e>i , where ei is the ith indicator vector.

By construction of A, the case i = 1 holds since PP(ui, ·) = PA(ε, ·) = α> =
e>1 . Now, suppose the claim is true for all 1 ≤ j ≤ i. Since |ui+1| ≥ |uj | for all
1 ≤ j ≤ i and P is prefix-closed, we must have ui+1 = uja for some a ∈ Σ
and 1 ≤ j ≤ i. Therefore, we have PP(ui+1, ·) = PA(uja, ·) = PA(uj , ·)Aa =
e>j Aa = Aa(j, ·). Finally, we observe that because AaHB = Ha and Ha(uj , ·) =
HB(uja, ·) = HB(ui+1, ·), when solving the system of equations for Aa we will ob-
tain Aa(j, ·) = e>i+1.

Now, let SS ∈ SS×k denote the sub-block of SA corresponding to the suffixes in
S. By the previous claim, to show that A(uv) = f(uv) for all u ∈ P and all v ∈ S
it suffices to show that S>S = HB. Let k′ = |S| and assume without loss of generality
that S = {v1, . . . , vk′} with v1 = ε and |vi+1| ≥ |vi| for all i. Then for i = 1 we
immediately have SS(v1, ·) = SA(ε, ·) = β> = HB(·, ε)> = HB(·, v1)> by the way
β is constructed. Now, suppose we have SS(vj , ·) = HB(·, vj)> for all 1 ≤ j ≤ i.
Note we must have vi+1 = avj for some a ∈ Σ and some 1 ≤ j ≤ i. Thus, we see
that SS(vi+1, ·) = SA(avj , ·) = SA(vj , ·)A>a = HB(·, vj)>A>a = Ha(·, vj)> =
HB(·, avj)> = HB(·, vi+1)>.

To complete the proof it just remains to show that A(uav) = f(uav) = Ha(u, v)
for all u ∈ P , v ∈ S , and a ∈ Σ. This follows from the previous claims by noting that
A(uiav) = PP(ui, ·)AaSS(v, ·)> = e>i AaHB(·, v) = e>i Ha(·, v) = Ha(ui, v). ut



3.6 WFA Reconstruction via Rank Factorizations

In this section, we show how a rank factorization of HB for a non-minimal complete
Hankel mask B can be used to reconstruct a WFA. The main difference with the proce-
dure presented in the previous sections is that here the number of states of the resulting
WFA is not tied to the number of prefixes |P| in the mask, but to the rank of HB, which
can be small, even if |P| is large.

Let B = (P,S) be a Hankel mask in Σ∗ with ε ∈ P ∩ S . Given a Hankel matrix
H, in addition to the matrices Ha = HBa

∈ SPa×S for a ∈ Σ introduced in the
previous section, we define vectors hP ∈ SP and hS ∈ SS with entries given by
hP(u) = H(u, ε) and hS(v) = H(ε, v). Note that the condition ε ∈ P ∩S implies that
hP (resp. h>S ) can be found as a column (resp. a row) in HB.

Suppose B is a complete Hankel mask and let k be the rank of HB, rank(HB) = k.
Then, HB admits a rank factorization HB = PBS

>
B with PB ∈ SP×k and SB ∈ SS×k.

Such a rank factorization can be obtained using a Gaussian elimination algorithm [30].
Next, we show how to use this rank factorization in order to reconstruct a WFA A with
k = |QA| states.

The algorithm proceeds by solving a series of systems of linear equations. For the
initial and final weights we find the unique solutions to SBαA = hP and PBβA = hS .
Note that αA exists and is unique since SB contains a basis of linearly independent
vectors for the column-span of HB and hP is a column of HB. A similar argument
holds for βA. For the transition weights associated with a symbol a ∈ Σ, we use the
unique solution to the system of linear equations Ha = PBAaS

>
B .

One way to solve this last system of equations — and to see that indeed it admits
a unique solution — is to recall that the equation for Aa is equivalent to vec(Ha) =
(SB ⊗K PB) vec(Aa), where ⊗K denotes the Kronecker product between matrices,
and vec(M) the result of stacking the columns of M into a single vector. Observe that
the new system of equations admits k2 unknowns. Its coefficients satisfy rank(SB ⊗K

PB) = rank(SB) rank(PB) = k2 by a basic property of Kronecker products, and
rank([SB ⊗K PB| vec(Ha)]) = rank(SB ⊗K PB) since the columns of Ha are lin-
ear combinations of the columns of PB because the mask B is complete. Thus, by the
Rouché–Capelli theorem, there exists a unique solution for Aa. Furthermore, the solu-
tion can be found using Gaussian elimination in O(|P||S|k2) arithmetic operations.

Overall, the cost of reconstructing the WFA A starting from a complete Hankel
mask takes O(|Σ||P||S|k2) arithmetic operations. As in the previous section, if, in
addition to being complete, the mask B is a Hankel basis for some Hankel matrix Hf ,
then the WFA recovered is a minimal automaton for f . The proof of this result is almost
identical to that of Theorem 2 and is omitted.

Theorem 4. If B is a complete Hankel basis for Hf , then the reconstructed WFA A

computes f and is minimal.

3.7 WFA Reconstruction from Noisy Hankel Matrices

In the two WFA reconstruction algorithms described in the previous sections, we as-
sumed that the Hankel sub-blocks used in the reconstruction procedure are known ex-



actly. However, that assumption is not realistic in practice, especially when we are con-
cerned with learning problems. We now describe a variation of the WFA reconstruction
algorithm from rank factorizations that works in situations where the only available
information are approximations to the Hankel sub-blocks specified by a Hankel mask.

This procedure relies in a crucial manner on the computation of a singular value
decomposition (SVD), which is only possible for the real case S = R, the complex
case S = C, and, in general, in the case where S is a field obtained as the intersection
of real closed fields [48]. Since S = R is the case which occurs more frequently in
applications, and is also a case for which efficient SVD algorithms are widely avail-
able, we will present the algorithm in this section only for this case. The ideas can be
straightforwardly generalized to other fields admitting an SVD.

As before, we will assume that the algorithm is given as input an arbitrary Hankel
mask B = (P,S). The difference is that here, instead of the exact versions of the
matrices and vectors HB, Ha, hP , and hS that represent sub-blocks of some Hankel
matrix H, the algorithm will only have access to approximate versions of these objects.
For example, we are given a matrix ĤB ∈ RP×S such that ĤB = HB + EB, where
EB ∈ RP×S is a noise matrix. Likewise, where are given Ĥa = Ha + Ea for every
a ∈ Σ, ĥP = hP + eP , and ĥS = hS + eS .

The important point to note here is that even if HB has small rank, say rank(HB) =

k ≤ rank(H) = n, its approximation ĤB may have a much larger rank, and thus, in
this case, the straightforward rank factorization approach will yield a large WFA which
does not necessarily resemble the one we would recover had we had access to the exact
versions of HB and the other matrices. For example, if the error matrix EB is in generic
position, or random, then HB will have full rank.

Thus, the question is now how to use these matrices to reconstruct a WFA with less
states than rank(ĤB), and that ideally resembles the one we would obtain in the exact
case if the amount of noise is small. The key to the solution consists of using an SVD
and replace the rank factorization in the previous WFA reconstruction algorithm by a
low rank approximation of ĤB.

Now we proceed to describe the first steps of the algorithm. As input it receives
the Hankel mask B, the number of states k′ that the output WFA must have, and the
approximated Hankel sub-blocks described above. We start by computing the SVD of
ĤB and using it to obtain the best rank k′ approximation ĤB ≈ ÛD̂V̂>, where D̂ =
diag(ŝ1, . . . , ŝk′) is a diagonal matrix containing the top k′ singular values of ĤB, and
Û ∈ RP×k′ and V̂ ∈ RS×k′ contain the associated left and right singular vectors
respectively. With this notation, one can see that now P̂B = ÛD̂ and ŜB = V̂ provide
a rank factorization P̂BŜB of the best rank k′ approximation to ĤB.

The next natural step in the algorithms would be to solve the following systems of
linear equations in order to reconstruct a WFA: ŜBα̂ = ĥP , P̂Bβ̂ = ĥS , and (ŜB ⊗K

P̂B) vec(Âa) = vec(Ĥa) for every a ∈ Σ. There is, however, an obstruction to the
direct application of this strategy in this case: these equations are no longer guaranteed
to admit a unique solution. Due to the errors in the Hankel sub-blocks introduced by
the approximation, these equations might now be unsatisfiable or not admit a unique
solution. Thus, we will follow a least-squares approach and look for a solution to these
equations that minimizes the norm of the residual. A way to express these solutions



in closed-form is via the Moore–Penrose pseudo-inverse M+ ∈ Rd2×d1 of a matrix
M ∈ Rd1×d2 . In particular, given a linear system of equations Mx = b the pseudo-
inverse yields a solution x = M+b that satisfies the equation if it is satisfiable, and that
minimizes the error ‖Mx− b‖ otherwise.

Now we proceed to describe the rest of the algorithm, which essentially applies this
strategy to solve the linear systems given above. For the initial and final weights this
yields α̂ = Ŝ+

B ĥP and β̂ = P̂+
B ĥS . In our case, these are easy to compute because by

properties of the pseudo-inverse it can be shown that P̂+
B = (ÛD̂)+ = D̂−1Û> and

Ŝ+
B = V̂+ = V̂>. For the transition weights, a short algebraic calculation shows that

(ŜB ⊗K P̂B)+ = (Ŝ+
B ⊗K P̂+

B ) = (V̂> ⊗K D̂−1Û>). Substituting into vec(Âa) =

(ŜB ⊗K P̂B)+ vec(Ĥa) and applying the equivalence between vectorized and unvec-
torized systems of linear equations, we obtain the expression Âa = D̂−1Û>ĤaV̂.

Overall, the complexity of this process is dominated by the low-rank SVD computa-
tion, which takes O(|P||S|k′) arithmetic operations. Hence, the arithmetic complexity
of computing the WFA Â with k′ states given by α̂, β̂, and Âa for a ∈ Σ, is in
O(|Σ||P||S|k′).

The main result of this section is a bound on the sensitivity of this algorithm to
the magnitude of the noise. To make this more precise, we need two ingredients. The
first is a precise way to quantify the error in the approximations. Different choices
lead to slightly different results, but in order to illustrate the point we will simply use
the Euclidean norm for vectors and the Frobenius norm for matrices. Thus, we will
define εB = ‖EB‖F , εa = ‖Ea‖F for every a ∈ Σ, εP = ‖eP‖2, and εS = ‖eS‖2.
For convenience we will also write ε = max{εB, εa1 , . . . , εar , εP , εS}. The second
ingredient is to determine what would the output of the algorithm be if the input had
no noise. For that purpose, let us assume that k′ = rank(HB) = k and ε = 0. In that
case, we have ĤB = HB and the SVD of rank k yields an exact rank factorization
HB = PS> = (UD)(V)>. Thus, the algorithm returns a WFA with k states given
by α = V>hP , β = D−1U>hS , and Aa = D−1U>HaV, where we dropped
the hat notation to indicate that we are in the case ε = 0. For this automaton, a direct
application of Theorem 4 yields the following result, which shows that this is essentially
a generalization of the WFA reconstruction algorithm based on rank factorizations.

Corollary 2. Suppose k′ = rank(HB) and ε = 0. If B is a complete basis for Hf ,
then the reconstructed WFA A computes f and is minimal.

The most important result about the WFA reconstructions algorithm based on SVD
is the following, which bounds the error between the noisy and the noiseless cases.

Theorem 5. Suppose k′ = rank(HB). Let A denote the WFA obtained in the case
ε = 0 and Â the WFA obtained in the noisy case. Then, the following approximation
guarantee holds as ε→ 0:

∆ = max{‖α− α̂‖2, ‖β − β̂‖2, ‖Aa1 − Âa1‖F , . . . , ‖Aar − Âar‖F } = O(ε).

The proof of this results is technical and goes beyond the scope of the present survey.
Essentially, it involves a detailed analysis using perturbation theory for singular values
and vectors (see [9, Chapter 5] for details).



4 Algorithms for Learning WFAs

In this section, we show how the reconstruction techniques described in the previous
section can be used in the design of algorithms for learning WFAs. We describe three
WFA learning algorithms, each designed for a different learning scenario. The scenarios
mainly differ by the way the data about the target function f : Σ∗ → S is gathered:
exact learning from membership and equivalence queries (Section 4.1), PAC learning
(Probably approximately correct learning) of a probability distribution represented by
a WFA from i.i.d. samples (Section 4.2), and statistical learning of WFA from general
string–label pairs (Section 4.3).

We also present learning guarantees in each case, thereby showcasing an important
trade-off between degree of fidelity of the information collected versus quality of the
learned WFA with respect to a target automaton or distribution. Of the three scenarios,
only the first one can learn WFA over an arbitrary field S; in the other two scenarios we
restrict ourselves only to the case S = R.

4.1 Learning WFAs From Queries

In this section, we describe an algorithm for learning WFAs defined over an arbitrary
field S. The algorithm was first presented in [14] for the special case S = Q and later
generalized to arbitrary fields in [15]. It can be interpreted as a direct generalization
of Angluin’s classical algorithm for learning DFAs from membership and equivalence
queries [5] and can be further applied to other learning problems (see [12,13]).

The learning scenario for this algorithm coincides with the active learning scenario
defined and adopted by Angluin [5] for learning (unweighted) automata. In this sce-
nario, given a target rational function f : Σ∗ → S the learner can make the following
two types of queries to which an oracle responds:

– membership queries MQf : the learner requests the target value f(w) of a string
w ∈ Σ∗ and receives that value;

– equivalence queries EQf : the learner conjectures a WFA A; he receives the re-
sponse yes if f can be computed by A, a counter-example w ∈ Σ∗ with f(w) 6=
A(w) otherwise.

The objective of the learner is to determine exactly a WFA A representing f . We will
denote by n the unknown rank of the Hankel matrix of f , n = rank(Hf ).

The main idea behind the algorithm is to build a complete minimal Hankel basis B
for Hf , fill the associated Hankel sub-blocks HB and HΣ by making a series of calls
to MQf , and then reconstruct the corresponding WFA using the Gaussian elimination
algorithm described in Section 3.5. In order to find such a basis B several intermediate
complete minimal Hankel masks are considered. For each, the corresponding WFA is
reconstructed using information collected from membership queries, and the counter-
examples supplied by the equivalence queries used to extend the current Hankel mask.

Given two bases B = (P,S) and B′ = (P ′,S ′), we will write in short B ⊆ B′ for
P ⊆ P ′ and S ⊆ S ′. The algorithm constructs a sequence of complete minimal Hankel
masks B0 ⊆ B1 ⊆ · · · ⊆ Bd, where the last mask Bd is a Hankel basis for Hf . At each



step, the inequality rank(HBi+1
) > rank(HBi

) holds, which guarantees that the total
number of iterations is at most d ≤ n. The starting mask is B0 = ({ε}, {ε}), which is
clearly a complete and minimal mask.

The main inductive step is given by the following procedure. First, given Bi =
(Pi,Si) with i ≥ 0, the algorithm reconstructs a WFA Ai by filling the corresponding
Hankel sub-blocks using calls to MQf and then applying the reconstruction algorithm
of Section 3.5. Second, it makes an equivalence query EQf (Ai). If the answer is yes,
the algorithm terminates. Otherwise, it receives a counter-example w ∈ Σ∗ such that
Ai(w) 6= f(w). This is used to build the new Hankel mask Bi+1 = (Pi+1,Si+1) as
follows:

1. find a decomposition w = uav where u is the longest prefix of w in Pi;
2. let Si+1 = Si ∪ suffs(v), where suffs(v) is the set of all suffixes of v;
3. starting from Pi+1 = Pi, and while rank([H>Bi+1

| H>Σ ]) > s rank(HBi+1
), keep

adding to Pi+1 prefixes ua ∈ Pi+1Σ such that rank([H>Bi+1
| Ha(u, :)>]) =

rank(HBi+1) + 1.

Note the resulting mask Bi+1 is complete by construction and minimal because only
prefixes that increase the rank of HBi+1 are added to Pi+1. Also note that the algo-
rithm maintains the property that Pi is prefix-closed and Si suffix-closed. It is clear that
if the algorithm terminates, it returns the correct answer. To prove that the algorithm
terminates it suffices to show that at each iteration the inequality |Pi+1| > |Pi| holds
since this will guarantee that at each iteration the rank of HBi increases. Since this rank
can be at most n = rank(Hf ), and since whenever rank(HBi) = rank(Hf ) Bi is a
complete minimal Hankel basis, Theorem 2 then shows that the WFA Ai computes f .
The termination of the algorithm is guaranteed by the following result.

Lemma 1. Let B′i = (Pi,Si+1), where Si+1 is the set of suffixes obtained after pro-
cessing the counter-example w received from the (i + 1)th call to EQf . Then, the fol-
lowing inequality holds: rank([H>B′i

| H>Σ ]) > rank(H>B′i
).

Proof. Suppose that rank([H>B′i
| H>Σ ]) = rank(H>B′i

) and let A′i be the WFA re-
constructed from B′i by the algorithm in Section 3.5. Since Bi and B′i share the same
prefixes, both are minimal and complete, and Si ⊆ Si+1, then Ai and A′i must com-
pute the same function. Thus, we have f(w) 6= Ai(w) = A′i(w). On the other hand,
w = uav with u ∈ Pi and v ∈ Si+1. Thus, in the matrix Ha used to reconstruct A′i we
have Ha(u, v) = f(w), and by Theorem 3 it holds that A′i(w) = f(w). We conclude
by contradiction that rank([H>B′i

|H>Σ ]) > rank(H>B′i
). ut

We can now bound the number of queries made by the algorithm. First observe
that the number of calls to EQf is O(n) since one such call is made for each of the
d + 1 Hankel masks. To bound the number of calls to MQf , note that since we have
Bi ⊆ Bi+1 for each i, at each stage most of the queries needed to fill HBi+1

have already
been asked in previous iterations. Thus, it suffices to count the number of MQf queries
needed to fill the matrices corresponding to the last Hankel mask Bd = (Pd,Sd). This
number is clearly (|Σ|+ 1)|Pd||Sd|.



Let L denote the length of the longest counter-example returned by the successive
calls to EQf , we have |Sd| ≤ 1+dL. This, combined with |Pd| = n, shows that the total
number of calls to MQf is in O(|Σ|n2L). Note that this complexity is not optimal: [17]
give an improved technique for processing counter-examples that yields an algorithm
making only O(|Σ|n2 log(L)) calls to MQf .

4.2 Learning Stochastic WFAs from I.I.D. Samples

A stochastic WFA is a WFA computing a probability distribution. In this section, we
consider the problem of learning a stochastic WFA and therefore assume that S =
R. The learning scenario commonly adopted for stochastic WFAs is one where the
learner receives a finite set of strings sampled i.i.d. from the target stochastic WFA.
The objective of the learner is to use this training sample to learn a WFA computing a
function close the target distribution with respect to some measure of accuracy.

In this section, we present an algorithm for this problem which consists of first using
the training sample to estimate a sub-block of the Hankel matrix of the target WFA,
and next of using the algorithm described in Section 3.7 to reconstruct a WFA based
on those estimates. Several variants of this algorithm can be found in the literature,
including [33,7] for the first such algorithms based on SVD, [10] for variants using
prefix and substring statistics, and [6,9] for detailed analyses and further references.

A stochastic WFA over Σ is one that computes a probability distribution over Σ∗,
that is, a WFA A with A(w) ≥ 0 for all w ∈ Σ∗ and

∑
w∈Σ∗ A(w) = 1. Proba-

bilistic automata with stopping probabilities or absorbing states are typical examples of
stochastic WFAs in this class (see [57,58,24] for a discussion of the relations between
different finite-state machines computing probability distributions).

Let A be a fixed unknown target stochastic WFA A. We assume that the learning
algorithm receives a sample S = (w1, . . . , wm) ∈ (Σ∗)m of m strings sampled i.i.d.
from the distribution computed by A. In addition to S, the algorithm receives the alpha-
bet Σ, a number of states n that the output automaton should have, and a finite Hankel
mask B = (P,S) with n ≤ min{|P|, |S|}.

The first step of the algorithm is to compute empirical estimates of the matrices
and vectors required by the SVD-based WFA reconstruction algorithm of Section 3.7:
ĤB, Ĥa for a ∈ Σ, ĥP , and ĥS . This is done by assigning to each entry in these
matrices and vectors the relative frequency of the corresponding string in the sample
S = (w1, . . . , wm). For example, for u ∈ P and v ∈ S the algorithm sets

ĤB(u, v) =
1

m

m∑
i=1

I[wi = uv] .

The same is done for Ĥa, ĥP , and ĥS . These approximations are then used by the WFA
reconstruction algorithm to obtain an automaton Â with n states.

The empirical probabilities used in the estimations of the Hankel sub-blocks con-
verge to the true probabilities as m → ∞. One can also expect that the difference
between the unknown probability distribution f and the function computed by Â de-
creases as m increases. The next theorem gives a stronger guarantee which holds for



finite samples, as opposed to a result holding in the limit. It is a probably approximately
correct (PAC) learning guarantee: for a sample size m polynomial in the size of the
1/ε where ε is the precision sought, log(1/δ) where δ is the confidence parameter and
several other parameters including 1/sn(HB) where sn(HB) is the singular value of
HB and the string length L, the WFA Â returned by the algorithm is ε-close to f for
the norm-1 over the set of strings of length at most L.

Theorem 6. Let ε > 0. Then, for any δ ∈ (0, 1), with probability at least 1−δ over the
draw of a sample S of size m ≥ p(|Σ|, n, |P|, |S|, 1/sn(HB), L, 1/ε, log(1/δ)) from
the (target) probability distribution f , where p is a polynomial, the WFA Â returned
by the algorithm after receiving S, a complete Hankel basis B = (P,S) for Hf and
n = rank(Hf ) verifies the following inequality:∑

w∈Σ≤L

|f(w)− Â(w)| ≤ ε .

The proof of this result admits three components: Theorem 5, a concentration bound
for the estimates ĤB, and a bound relating accuracy in transition weights between A

and Â to accuracy in the function they compute (see [33,6,9] for detailed proofs).

4.3 Learning WFAs from String–Value Pairs

In this section, we present an algorithm for learning WFAs in a more general scenario
than the previous ones. This scenario was first introduced in [11]. The learning algo-
rithm for WFAs described here is also due to [11].

Here, as in the standard supervised learning, the learner receives a labeled sam-
ple S = ((w1, y1), . . . , (wm, ym)) ∈ (Σ∗ × S)m containing m string–value pairs
(wi, yi) ∈ Σ∗ × S, drawn i.i.d. according to some unknown distribution D. The learn-
ing problem consists of finding a WFA A with small expected loss, that is with small
E(w,y)∼D[`(A(w), y)], where ` is a loss function defined over semiring pairs. We will
consider again here the case S = R. The problem is then an instance of a regression
learning problem. The loss function ` : R × R → R+ is used to measure the closeness
of the labels. Some common choices for ` are the quadratic loss defined for all y, y′ ∈ R
by `2(y, y′) = (y − y′)2 and the absolute loss defined by `1(y, y′) = |y − y′|.

Note that in this formulation we did not assume that the labels y in pairs (x, y) drawn
from D are computed by some WFA. Thus, in learning-theoretic terms, we consider an
agnostic setting.

Note also that one could find a WFA A consistent with the labeled sample, that is
such that A(wi) = yi for all i ∈ [1,m]. But, such a WFA could be large and might
not benefit from a favorable expected loss. Furthermore, it was recently shown in [39]
that the problem of finding the smallest WFA A consistent with the labeled sample is
computationally hard.

A WFA minimizing the empirical loss 1
m

∑m
i=1 `(A(wi), yi) could overfit the train-

ing sample and typically would not benefit from favorable learning guarantees unless it
is selected out of a less complex sub-family of WFAs. The algorithm we describe here



avoids overfitting by constraining the choice of a WFA in two ways: by restricting the
number of states, and by controlling the norm of a certain Hankel matrix.

The algorithm works in two stages. In the first stage, the sample S is used to find a
sub-block of a Hankel matrix on a given mask. The second stage uses this Hankel block
to reconstruct a WFA with a given number of states using the SVD-based method from
Section 3.7. The algorithm receives as input the sample S, the alphabet Σ, a Hankel
mask B = (P,S) with ε ∈ P ∩S , a number of states k ≤ min{|P|, |S|}, a convex loss
function ` : R× R→ R+, and a regularization parameter λ > 0.

The first stage builds a basis B′ = (P ′,S) with P ′ = P ∪ PΣ and a modified
sample S′ containing only those (wi, yi) ∈ S such that wi ∈ P ′S. Then, the algorithm
solves the convex optimization problem

ĤB′ ∈ argmin
H∈HB′

1

|S′|
∑

(w,y)∈S′
`(H(w), y) + λ‖H‖∗ ,

where HB′ denotes the set of all Hankel matrices H ∈ RP′×S , H(w) denotes H(u, v)
for some arbitrary decomposition w = uv with u ∈ P and v ∈ S, and where ‖H‖∗
denotes the nuclear norm of H defined as the sum of the singular values of H.

The second stage of the algorithm starts by extracting from ĤB′ the Hankel sub-
blocks associated with the Hankel mask B: ĤB, Ĥa for a ∈ Σ, hP , and hS . Then, it
uses the SVD-based WFA reconstruction algorithm of Section 3.7 to obtain a WFA Â

with k states.
The design of the algorithm, and in particular the choice of the nuclear norm as a

regularization term for finding the Hankel matrix ĤB′ is supported by several proper-
ties. First, the nuclear norm is a convex surrogate for the rank function commonly used
in machine learning algorithms [27]. By Theorem 1, low-rank Hankel matrices cor-
respond to WFAs with small numbers of states, thus it favors the selection of smaller
WFAs by the algorithm. A second justification is given by the following theorem, which
provides a guarantee for learning with WFAs in terms of the nuclear norm of the asso-
ciated Hankel matrix.

Let M > 0 and define τM : R→ R as the function defined by τM (y) = sign(y)M
if |y| > M , τM (y) = y otherwise. Let S = ((w1, y1), . . . , (wm, ym)) ∈ (Σ∗ × R)m.
Given a decomposition wi = uivi, for any 1 ≤ i ≤ m, we define US = maxu∈Σ∗ |{i :
ui = u}| and VS = maxv∈Σ∗ |{i : vi = v}|. A measure of the complexity of S that
will appear in the next theorem is WS = min max{US , VS}, where the minimum is
taken over all possible decompositions of the strings wi in S. For any R > 0, let FR
denote the following class of functions

FR = {f(w) = τM (A(w)) : A WFA, ‖Hf‖∗ ≤ R} .

The following gives a learning bound for the algorithm just discussed.

Theorem 7. Let `1 denote the absolute loss. Assume that there exists M > 0 such
that P(w,y)∼D[|y| ≤ M ] = 1. Then, for any δ > 0, with probability at least 1 − δ
over the draw of an i.i.d. sample S of size m from D, the following inequality holds



simultaneously for all f ∈ FR:

E
(w,y)∼D

[`1(f(w), y)] ≤ 1

m

m∑
i=1

`1(f(wi), yi) + 3M

√
log( 2

δ )

2m

+O

(
R
(

log(m+ 1) +
√
WS log(m+ 1)

)
m

)
.

A similar result was first proven in [11] using a Frobenius norm regularizer instead of a
nuclear norm. The analysis in [11] was based on a stability argument, and it is not clear
how to extend it to the nuclear norm case, which is known to perform better than the
Frobenius norm in some applications [51]. Theorem 7 is proven using a Rademacher
complexity analysis of WFAs recently given by [8].

5 Conclusion

We presented a detailed survey of modern algorithms for learning WFAs. We high-
lighted the key role played by the notion of Hankel matrix and its properties in the
design of these learning algorithms which are designed for different scenarios. These
properties and the algorithms we described could inspire other variants of these algo-
rithms as well as other algorithms.
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