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ABSTRACT. These notes present a significant milestone of modern algebra due
to Saharon Shelah: the independence (of ZFC + GCH) of the existence of
non-free Whitehead groups, i.e., the undecidability of the Whitehead problem.
The independence is proved by employing combinatorial properties of infinite
cardinals, notably Shelah’s Uniformization Principle (SUP) and the diamond
prediction principles.

First, we prove in ZFC that all countable Whitehead groups are free. SUP
is then employed to construct arbitrarily large non-free Whitehead groups.
Finally, we show that it is consistent with ZFC + GCH that all Whitehead
groups W are free: the proof is by induction on the cardinality, , of W, using
the Weak Diamond Principle ® when & is a regular uncountable cardinal, and
Shelah’s Singular Compactness in the case when & is singular.

Though undecidability of the Whitehead problem for groups is the main
topic here, some of the results are proved in more general settings, provid-
ing thus tools for further applications of set-theoretic methods in homological
algebra and representation theory.
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1. THE WHITEAD PROBLEM

In the late 1940s, Whitehead asked whether each (abelian) group A such that
Ext}(A,Z) = 0 is free. This question became known as the Whitehead Problem.
Stein [25] provided a positive answer for A countable, but it was only in 1974 that
Shelah [21] proved that the answer is independent of ZFC for groups of cardinality
N;. Soon after, making use of his celebrated Singular Compactness Theorem [22],
Shelah proved undecidability of the Whitehead problem for all groups A. This
result, and the related more recent general works in the setting of modules over
non-perfect rings, are the main topics of the present notes.

Shelah’s solution to the Whitehead Problem was the starting point of a new
branch of algebra dealing with applications of set-theoretic methods in representa-
tion and module theory. Let us stress that these applications are not restricted to
independence results. They provide powerful techniques making it possible to work
in ZFC with large representations/modules expressed as unions of chains, or direct
limits of direct systems, of smaller modules. Besides almost free modules [6], more
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recent applications include the structure theory of infinite dimensional tilting and
Mittag-Leffler modules [11, Vol. 1], [2], [17], properties of indecomposable modules
[11, Vol. 2], [16], approximations of modules [11, Vol. 1], [18], relative homological
algebra [9], [19], [28], etc.

Definition 1.1. Let R be a ring. A module M € Mod-R is Whitehead provided
that Exty (M, R) = 0.

Remark 1.2. Clearly, any projective, and hence any free, module over any ring R
is Whitehead. But the answer to the (generalized) Whitehead question of whether
all Whitehead modules are projective depends on the ring R in case.

For example, if R is right self-injective then all modules are Whitehead, and if
R is a cotorsion Dedekind domain, then all torsion-free modules are Whitehead.
However, we will see below that the answer to the Whitehead question for R = Z
(and more in general, for non-cotorsion PID’s of cardinality < wq) is independent
of ZFC + GCH.

Lemma 1.3. (1) Let R be a right hereditary ring. Then all submodules of
Whitehead modules are Whitehead.
(2) Let R be a Dedekind domain. Then all Whitehead modules are torsion-free.

Proof. 1. Ift N C M and M is Whitehead, then we have the exact sequence 0 =
Exty(M, R) — Extp(N,R) — Exth(M/N,R) = 0 where the latter Ext-group is
zero, because R is right hereditary.

2. Let I be any proper ideal of R. Since R is a Dedekind domain, I is projective
and finitely generated, hence I & I’ = R™ for some module I’ and 0 < n < w. The

non-split short exact sequence 0 — I SR R/I — 0 shows that Exty(R/I,T) #
0, whence also Exth(R/I, R) # 0. So by part 1., if M is a Whitehead module, then
R/I does not embed into M. In other words, M is torsion-free. O

For countable abelian groups, the following lemma (known as Pontryagins’ Cri-
terion) will be useful:

Lemma 1.4. The following are equivalent for an abelian group A:

(1) A is wy-free (i.e., each countable subgroup of A is free),
(2) A is torsion-free, and each finite rank pure subgroup of A is free.

Proof. Since finite rank torsion-free groups are countable, we are left to prove that
2. implies 1. Assume 2. and let B be a countable subgroup of A, generated by
{bn, | n < w}. By induction on n < w, we can define a chain of pure subgroups
B, C. Asuchthat )  _ 0,7 < B, (seee.g. [6,1V.2.1]). Since each B, is of finite
rank and pure in A, it is free (and finitely generated) by the assumption. As B, is
pure in B, 11, the group B,,+1/B,, is finitely generated and torsion-free, and hence
free. So B,, is a direct summand in B, 1, and |J,,_,, Bx is a free group containing
B. Thus B is free, too. U

We now arrive at the classic result by Stein [25]. Its proof presented below follows
[10, §99]. But first we recall the definition and basic properties of Priifer groups:

Let p be a prime number. Let Z,~ denote the Priifer p-group, that is, Zp~ =
F/G where F = Z) is the free group with the canonical basis {1; | i < w}, and G
is the subgroup of F' generated by the elements 1g.p, and 1; — 1;41.p for all i < w.

Lemma 1.5. Let p be a prime number. Then Zye is isomorphic to the p-torsion
part of the torsion group Q/Z, and Q/Z = @pGPZPOO’ where P is the set of all
prime numbers.

Moreover, Zy is a uniserial group, its only proper subgroups being (Z"+G)/G =
Zyn (0 <n<w), and End Zpe = J,, is the ring of all p-adic integers.
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Proof. By [10, §3 and §43, Ex. 3]. O

Theorem 1.6. Let A be a Whitehead group. Then A is wy-free.
In particular, each countable Whitehead group is free.

Proof. In view of Lemma 1.3, it suffices to prove the second claim. Since finitely
generated torsion-free groups are free, Lemma 1.4 implies that we only have to
prove that if W is a Whitehead group of finite rank, then W is finitely generated.

Assume this is not the case. Let n be the rank of W, so Z" < W < Q™. Then
we have the exact sequence

.-+ — H = Homy(Z",Z) — E = Exty(T, Z) — Ext,(W,Z) = 0.

As W is not finitely generated, T = W/Z™ is a torsion group of cardinality w.
Clearly, H = Z" is countable, hence so is its homomorphic image F.

Let S be the socle of T'. If S is not finitely generated, then S is an infinite direct
sum of finite groups of prime order. Hence F' = Ext%(S, Z) is an infinite product of
the non-zero groups Ext%(Zp, Z) for some primes p. In particular, F' is uncountable.
Since S C T and Z is a hereditary ring, F' is a homomorphic image of E. Hence E
is uncountable, too, a contradiction.

If S is finitely generated, then S < T < D, where D is the injective (= divisible)
hull of T. So D is a finite direct sum (say of 0 < m < w copies) of the Priifer
p-groups Zyp~ for some primes p. By induction on m we will show that 7" contains
a copy of a Priifer group. By Lemma 1.5, all proper subgroups of Z,- are finite,
but T is infinite, so the assertion is clear for m = 1.

For the inductive step, we have T'C D = D' @® Zpe and T ¢ D', for some prime
p. If TN D' is infinite, then it contains a copy of the Priifer group by the inductive
premise, and so does T. If TN D’ is finite, then T/(T'ND’) = (T + D’)/D’ is an
infinite subgroup of D/D’ = Z,~, whence T/(T' N D) = Z,~. Let n < w be such
that p™(T' N D’) = 0. Then multiplication by p™ is an endomorphism of T" whose
kernel contains 7T'N D', so its non-zero image is a homomorphic image of, and hence
isomorphic to, Zpe.

Thus T contains a direct summand isomorphic to Zpe. By Lemma 1.5, F has a
direct summand isomorphic to

EXté(ZP‘” ,Z) = Homgz (Zpee, Q/Z) = Homy(Zp= , Ly ) = Jp.
However, J,, is uncountable, and so is E, a contradiction. O

Remark 1.7. The freeness of Whitehead groups can be proved in ZFC even within
certain classes of groups much larger than the class of all countable groups: Let T’y
denote the class of all countable groups, and for each ordinal a > 0, let ', be the
class of all torsion-free groups G containing a pure subgroup of finite rank, H, such
that G/H is a direct sum of groups each of which belongs to a class I'g for some
B < a. In [14], Theorem 1.6 was extended as follows: if G is a Whitehead group
such that G € T',, for an ordinal «, then G is free.

2. SHELAH’S UNIFORMIZATION PRINCIPLE AND THE VANISHING OF EXT
Let R be a non-right perfect ring, that is, R is a ring containing a sequence of
elements (a; | i < w) such that
() Rag 2 Rajag 2 ...Ray...ap 2 Ranyi1an...a9 2 ...

is a strictly decreasing chain of principal left ideals of R.
For example, R = Z is non-right perfect; in fact, so is any right noetherian
ring which is not right artinian (by [1, 15.20, 15.22, and 28.4]). In particular,
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commutative noetherian rings are non-right perfect, iff their Krull dimension is at
least 1 (by [9, 2.4.27]).

A distinctive feature of non-right perfect rings is the existence of Bass modules,
i.e., countably presented flat modules of projective dimension 1:

Lemma 2.1. Let R be non-right perfect and (a; | i < w) a sequence of elements of
R such that the chain (x) is strictly decreasing. Let (1; | i < w) be the canonical
free basis of the free module R“). Consider the short exact sequence

0—R“ % R 5 B0
where v is defined by v(1;) = 1; — 1;41.a; for each i < w. Then B is a Bass module.

Proof. The short exact sequence does not split by [1, 28.2], whence proj.dim B = 1.
However, it is easy to see that Z/(R(”)) is a direct summand in R“) for each n < w,
so B = RW/(J, cw v(R™) is a direct limit of the countable direct system of
projective modules (R“) /v(R™) | n < w), whence B is flat. O

Throughout this section, we will assume that R is a non-right perfect ring. We
will fix a sequence (a; | i < w) of elements of R such that the chain () is strictly
decreasing, as well as the corresponding Bass module B from Lemma 2.1. We will
use this data to define particular large non-projective modules M such that the
functor Ext} (M, —) vanishes at all small modules.

Our set-theoretic setting for this section will be as follows:

k will denote a singular cardinal of cofinality w such that £ > card(R), and E a
subset of the (stationary) subset Ey of k', where Ey = {a < kT | cf(a) = w}.

For each a € E, the term ladder (for «) will denote a strictly increasing chain
of ordinals ¢, = {la(i) | i < w} such that o = sup;,, ¢a(i). So the ladder ¢,
witnesses that « has cofinality w; the ordinal ¢, (¢) will be called the ith rung of
the ladder /.

A set of ladders ¢ = {{,, | « € E} will be called a ladder system for E. Notice
that a particular ordinal can appear as a rung in many different ladders from ¢, but
any two distinct ladders in £ have only finitely many rungs in common.

Given a ladder system £ = {{, | « € E}, we will define a module M = F/G as
follows.

F will denote the free module of rank £ defined by F' = @, _,.+ Ra®D e Sa;
where R, = R for each a < k1 and S, = R for each o € E. The canonical free
generator of R, will be denoted by 1,, and the canonical free generators of S, by
1a,i (Z < w).

G will be the submodule in F' defined by G = > ., Go, where G = ), gai R
and ga,i = le, ;) — la,i + la,i+1a;. Then Ann(ge,;) = 0, and since the rungs of the
ladder £, are strictly increasing, Go = @, ., go,iR = R, Since {v(1;) | i < w} is
an R-independent set of elements of R(“), we infer that G = @ ack Ga- Tt follows
that G = {ga.i | @ € E,i < w} is a free basis of the (free) module G.

Thus M has projective dimension < 1.

A chain M = (M,, | a < kT) consisting of < k-generated submodules of M is
a called a ™ -filtration of the module M provided that My = 0, M, C M, for
each a < k™ (i.e., the chain is increasing), M, = UB<a Mg for each limit ordinal
o < k™ (i.e., the chain is continuous), and M = {J .+ Ma.

Since 7T is a regular uncountable cardinal, it is easy to see that given any two
kT-filtrations, M = (M, | @ < k1) and M = (M}, | @ < k") of M, the set
{a < kT | M, =M.} is a club (= a closed and unbounded subset) in k.
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For example, N = (Nq | @ < %) where Ny = (D, ., By ©Dcp <0 Sy +G)/G
for each o < k™, is a kT -filtration of M. We will call it the canonical filtration of
M. Notice that the chain N is strictly increasing, so card(M) = k7.

Lemma 2.2. Assume E is a stationary subset of kT. Then M is not projective,
so proj.dim M = 1.

Proof. Assume M is projective. By Kaplansky’s Theorem [1, 26.2], M is a direct
sum of countably generated projective modules, M = @, _,.+ Qqo. Foreach a < KT,
let Py = @y, Qp- Then P = (P, | @ < k) is a xT-filtration of M such that
P3/P, is projective for all @ < f < k. Let N'= (N, | @ < k) be the canonical
filtration of M.

Then the set C = {a < kT | P, = N,} is a club in k*. Since F is stationary
in k¥, there exist « € CNE and 8 € C N E such that o < B. In particular,
Ng/N, = Pg/P, is a projective module.

Consider the following submodules of the free module F':

X=P re p S Y=EPrRe P S+G Z=Y+S5.
a<y<pB YEE, a<y<pB r<a vEE <
Notice that N, =Y/G and Ng = (X + Z)/G.

We claim that X N Z C Y. Assume there exists z = zg + 21 € (XN Z)\Y with
To € @a§7<ﬁ R, and z; € X; = @%Eya<7<ﬁ S,. Then z; € @76E7a<7<5 v(S,).
Let 7 denote the projection of F' on to X;. Then there are finitely many elements
g1s---,9m € G such that z; = 7(z) is generated by the 7(g1),...,7(gm), that is,
T1 = Y ;< T(gi).r; for some ro,..., 7y € R. If i < m is such that g; — 7(g;) €
D, . 1y, then we let g; = 7(g;), otherwise g; = g;. Then 2’ =2z — >, gi.ri €
@D.<y<p 1y Since G C Y, also g; € Y for each ¢ < m, whence 2’ € (X NZ)\Y.
However, (®aﬁw<ﬂ R,)NZ =0, so 2’ =0, a contradiction. This proves our claim.

Since X NZ CY, we have (X+Y)NZ =Y. Thus

Ng/No 2 (X+2))Y =(X+Y)/Y® Z/Y.
Notice that S, NY = v(S,), whence Z/Y = S,/(Sa NY) = S /v(S.) = B.

Thus the non-projective Bass module B from Lemma 2.1 is isomorphic to a direct
summand in the projective module Ng/N,, a contradiction. O

Next, we recall Shelah’s Uniformization Principle (SUP), which is consistent
with ZFC 4+ GCH, see [7], and also [6, XIII.1.5]. (An illustrative picture for (SUP)
appears at the next page.)

SUP For each singular cardinal x of cofinality w, the following holds:

SUP,, There exist a subset £ C E; which is stationary in ™ and a ladder
system ¢, such that for each A < s (‘set of A colors’) and each set of functions
{ha : bo = A | a € E} (‘local colorings’ of the rungs of the ladders by A colors)
there exists f : kT — X (‘global coloring’ of all ordinals < x* by X colors) such
that for each o € E, f(€a(i)) = ho(€a(?)) for almost all ¢ < w. That is, for each
a € E, the global (uniform) coloring f coincides with the local coloring h, at all
but finitely many rungs of the ladder /.
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Our main consistency result on vanishing of the Ext functor reads as follows:

Theorem 2.3. Assume SUP. Let k be a singular cardinal of cofinality w such
that k > card(R), and E C Ey be the stationary subset of kT, and ¢ the ladder
system, provided by (SUP). Let M = F/G be the module constructed above for
this setting. Let N be any module of cardinality < k. Then Exth(M,N) = 0.

Proof. Since F is a free module, Exty (M, N) = 0, iff each = € Hompg(G, N) extends
to some y € Hompg(F, N).

Let A = card(N). Then we can w.l.o.g assume that A = N and use z to define
the local colorings h, (a € E) as follows: for each i < w, ha(€a (7)) = 2(ga,i)-

Let f : k™ — X be the global coloring provided by (SUP,). For each a € E,
take i, < w such that f(€,(i)) = ha(€a (7)) for all ¢ > 4.

We will define y € Homp(F, N) at the canonical free generators 1, of the R,
(a < k™) and the canonical free generators 1, ; of the S, (o € E, i < w) as follows:

If @ < k* and there exist 8 € E and i > ig such that o = £5(¢), then we put
y(1a) = f(a). Otherwise, we let y(1,) = 0.

Assume a € E. If i > i, then we put y(1,,;) = 0. For 0 < i < i,, we define
Y(1a,;) by downward induction, distinguishing two cases, as follows:

Case I: there exist § € E and j > ig such that £3(j) = {o(i). Then we put
Y(la,i) = fla(i)) — 2(ga,i) + y(la,it1) i

Case II: there are no such 8 € E and j > ig. Then we let y(1q,;) = —2(ga,) +
Y(lait1) i

It remains to verify that z(ga,i) = y(Le, 1)) —¥(La,i) T ¥(la,i+1).ai(= Y(ga,i)) for
alla € F and 7 < w.

First, if ¢ > iq, then y(léa(i)) = [(la(i)) = ha(la(i)) = ©(ga,i), while y(1a,:) =
Y(la,it1) = 0, whence 2(ga.i) = Y(ga.i)-

If 0 < i < iq, but there exist § € E and j > ig such that g(j) = €, (i), then
we are in Case I, whence y(1,,;)) = f(£a(i)), while y(1a:) = f(la(i)) — 2(ga,i) +
Y(Laiv1)-@i- S0 2(gai) = Y(gari)-

If 0 <4 < i, but there are no such 8 € £ and j > ig, then we are in Case II,
W(henc)e y(Le,y) = 0, while y(14,i) = —2(ga,i) + y(la,it1).ai. So again, x(ga,:) =
Y\Ya,i)- 1
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Corollary 2.4. Assume SUP. Then for each cardinal T > 0 there exists a non-free
abelian group M, such that EX‘G%(MT,Z(T)) = 0. In particular, M, is a Whitehead
group.

Remark 2.5. There is no analog of Theorem 2.3 for right perfect rings. For those
rings, one can test for projectivity in ZFC: by [11, 8.8], if R is right perfect and
M € Mod-R, then M is projective, iff Ext(M,N) = 0 for each simple module
N. So if simp-R denotes a representative set (up to isomorphism) of the class
of all simple modules and N’ = Nesimp R N, then for each module M, M is

projective, iff Exth(M, N') = 0.

3. DIAMOND, WEAK DIAMOND, AND THE NON-VANISHING OF EXT

Now, we turn to a famous combinatorial principle discovered by Jensen in [13],
the Diamond Principle 6. We will formulate it in the following way which is more
adapted to our applications, as a principle that predicts functions between r-filtered
sets:

¢ For each regular uncountable cardinal x and each stationary subset F of k,
the following holds:

Ok(E) Let A be a set of cardinality « and B a set of cardinality < x. Let
(A, | v < k) be a k-filtration of the set A, and (B, | v < k) a s-filtration of the set
B. Then there exists a sequence of functions (f, | v € E) such that for each v € E,
fy € 4B, and for each function f : A — B, theset D(f) ={y€ E| f A, = f,}
is stationary in k.

In fact, we will employ only a weaker version of ¢ called the Weak Diamond
Principle ®. That principle only predicts colors of functions between x-filtered sets
given by 2-colorings:

® For each regular uncountable cardinal x and each stationary subset F of &,
the following holds:

P,.(E) Let A be a set of cardinality x and B a set of cardinality < k. Let
(A, | v < k) be a r-filtration of the set A, and (B, | v < k) a s-filtration of the
set B. For each v € F, let ¢ : Ay B, — 2. Then there exists a function ¢: £ — 2,
such that for each f € 4B, theset C(f) ={y € E| f | A, € 4B, and c(y) =
cy(f I A,)} is stationary in k.

By a classic result of Gédel, the Axiom of Constructibility (V = L) is consistent
with ZEC + GCH; Jensen [13] proved that ¢ is a consequences of V = L (see also
[6, VII.§1 and §3]):

Theorem 3.1. Assume V = L. Then { holds.
We also recall the following easy facts:

Lemma 3.2. (1) Assume that (k) holds for k = AT. Then 2* = At.
(2) & implies the GCH.

Proof. 1. Let Ay = yand By = 2 for all v < K, s0 A = x and B = 2. Let
(fy | v < k) be the sequence of functions provided by (k). Let X be a subset of
Aand f: A — 2 be the characteristic function of X, where X is viewed as a subset
of k, i.e., f(y) =1, iff v € X for each v < k.

By Ok(k), the set {y < k| f | v = f,} is stationary in k, so it contains some
d > A Then {yv < A| fs(y) =1} = X. Thus for each X C X there exists 6 < &
such that fs | A is the characteristic function of X. It follows that 2* < x = \*.

2. By part 1. (]
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Lemma 3.3. Let x be reqular uncountable cardinal and E be a stationary subset
of k. Assume i (E). Then @, (E) holds, too.

Proof. Let A be a set of cardinality x and B a set of cardinality < . Let (A |
v < k) be a s-filtration of the set A, and (B, | v < k) a s-filtration of the set B.
For each v € E, let ¢, : “7 B, — 2. Let (f, | v € E) be the sequence of functions
provided by &k (E).

Define a function ¢ : E — 2 by ¢(y) = ¢,(f,) for each v € E. Let f € 4B.
By Ow(E), the set D(f) ={y € E| f | A, = f,} is stationary in x. However, if
€U then co) ~n(£) =11 o) so DU) € CUY =y € 5114
A B, and c(vy) = ¢, (f | 4)}, and C(f) is stationary in &, too. O

By Lemma 3.2(1), $., (w1) implies CH. However, this is not true of ®,, (w1): by
a result of Devlin and Shelah [4], @, (w1) is equivalent to 2¥ < 2“! (see also [6,
VI.1.9)).

The consequences of & that we are going to prove contradict the consequences
of SUP proved in Section 2. This is not surprising in view of the following lemma:

Lemma 3.4. Let k be a singular cardinal of cofinality w. Assume @+ (FE) holds
for each stationary subset E of kT such that E C {a < k1 | cf(a) = w}. Then
SUP, fails.

Proof. Let E be any stationary subset of k™ such that F C {a < k| cf(a) = w}
and ¢ = {{, | « € E} be an arbitrary ladder system for E. Let A =2. Let A, =~
and B, =2 for all y < k™, s0 A= k" and B =2.

For each a € B, we define ¢ 1 “2 — 2 by co(z) = 1, if the set S(z) = {i <
w | £(€s(i)) = 0} is infinite, while ¢, (x) = 0 otherwise. By ®,+(F), there exists a
function ¢ : E — 2, such that for each f € *' 2, the set C(f) = {a € E | c(a) =
co(f | @)} is stationary in 7.

We will define the local colorings, {h, : £o, — 2 | @ € E}, of the rungs of the
ladders in ¢ as the constant functions: hq(¢q (7)) = c¢(a) for each i < w.

Assume there exists a global coloring f : k* — 2 such that for each a € E,
Fla(?)) = ha(£a () for almost all ¢ < w.

Take o € C(f). Assume f(£,(i)) = 0 for infinitely many ¢ < w. Then ¢(a) = 0,
whence ¢o(f [ @) =0, and S(f | «) is finite, a contradiction. If f(¢,(7)) = 0 only
for finitely many ¢ < w, then c¢(a) =1 =c,(f | @), so S(f | @) is infinite, which is
also a contradiction.

This proves that SUP, fails. O

In particular, if SUP, holds, then {,.+(F) fails for some stationary subset E
of kT with F C {a < st | cf(a) = w}. However, the validity of .+ (F) for
other stationary subsets of k¥ is a rather weak statement - it follows already from
2% = k1. The general result is due to Shelah [23] (see also [15] and [11, 18.15]):

Lemma 3.5. Let A\ be a cardinal such that 2> = X\T. Then {1 (E) holds for each
stationary subset E of AT such that E C {a < A\ | cf(a) # cf(N)}.

Remark 3.6. The notion of a ladder ¢, can easily be extended to witness cofinality
of ordinals « of cofinality > w. Also SUP can be extended accordingly: by [6,
XIII.3.11], it is consistent with ZFC + GCH that for every successor cardinal x = p*
there is a stationary subset E of k consisting of ordinals of cofinality cf(u) and a
ladder system ¢ on E which has A-uniformization for each A < p. As in Lemma
3.4, one can prove that this extension of SUP is inconsistent with ®. Thus, Lemma
3.5 gives a rather tight restriction on uniformization under GCH.
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We will use ® to prove the following recent result from [20], guaranteeing con-
sistency of non-vanishing of Ext for arbitrary rings R:

Theorem 3.7. Let R be a ring. Let k be a reqular uncountable cardinal. Let A and
B be modules such that card(B) < k, and A has a k-filtration A = (A, | @ < K)
such that Exth(As, B) = 0 for each o < k. Assume that the set S = {a < & |
Exth(Aat1/Aa, B) # 0} is stationary in s, and ®,(S) holds. Then Exth(A, B) #
0.

Before proving Theorem 3.7, we note some of its immediate consequences:

Corollary 3.8. (1) Let R be a right hereditary ring. Let k be a reqular un-
countable cardinal and assume that @, (E) holds for each stationary subset
of k. Let A and B be modules such that A is r-generated, Extk(A, B) = 0,
and card(B) < k.
Then A has a k-filtration (A, | @ < k) such that Exth(Aqi1/Aa, B) =0
for all a < k.

(2) Let k be a regular uncountable cardinal and assume that ®.(F) holds for
each stationary subset E of k. Assume moreover that each Whitehead group
of cardinality < K is free. Then each Whitehead group of cardinality k is
free, too.

Proof. 1. Since the module A is s-generated, it has a s-filtration (4, | @ < k)
(we can simply take a minimal set of generators, {z, | a < k}, of A and let
A, = > s.q7pR for each a < k). Possibly skipping some of the terms of this
filtration, we can w.l.o.g. assume that if a < x is such that there exists o < f < k
with Extp(A}/A, B) # 0, then already Extp (AL, /Al B) # 0.

Since R is right hereditary, Exth(A, B) = 0 implies that Exth(A., B) = 0 for
each @ < k. By Theorem 3.7, the set S = {a < | Extp(A, /A%, B) # 0}
is not stationary in k. So there is a club C C k such that ENC = 0. Let
z : kK — C be a strictly increasing continuous function whose image is C', and let
Aq = A, for each a < k. Then (Aq | a < k) is a s-filtration of A such that

Exth(Aat1/Aa, B) =0 for all a < .

2. This follows from part 1. by taking R = Z, B = Z, and A = a Whitehead group
of cardinality x. The point is that the s-filtration (A, | @ < k) of A constructed
in 1. has the property that for each a < k, Aqt1/Aq is a Whitehead group of
cardinality < k. Hence A,y1/A4 is free by the assumption, so Ay = Ay @ Cy
for a free group C,, whence A = C, is free. O

a<k

Proof. of Theorem 3.7:
First, using an analog of the Horseshoe Lemma (cf. [11, 7.1]), we can extend
the k-filtration A into a continuous well-ordered system of short exact sequences

Er: 0= K, =Y F, ™ A, — 0 where F, is a free module of rank < & and the
three components of connecting maps €, : £, — 441 are the inclusion of K, into
K11, the split inclusion v, : F,, < F441, and the inclusion po @ Aq — Agy1,
respectively.

Then lig(KREa is the short exact sequence 0 — K S F = A= 0 where F is
free of rank k. We can also choose a s-filtration (V,, | @ < k) of a set V of free
generators of F', such that V,, is a set of free generators of F, for each a < k.

Since Ext}%(Aa,B) = 0 for a < K, for each homomorphism f : K, — B we
can fix an extension f¢ € Homg(F,, B) with f¢ | K, = f. Furthermore, for each
o € S, Exty(Aat1/Aa, B) # 0, so we can choose k, € Hompg(Aq,, B) that cannot
be extended to Aqy41.
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Consider any k-filtration (B, | @ < k) of the set B. For each o € S, we define a
2-coloring ¢, : VB, — 2 as follows: For each x € V> B,,, we let 2’ € Hompg(F,, B)
be the (unique) extension of z to F,, and put y = (2’ | K,)¢. Then y — 2’ is zero
on K, hence it defines a (unique) homomorphism from A, to B. We let ¢, (z) = 1,
iff this homomorphism can be extended to Ay41.

Now, ®,(S) yields a ¢ : S — 2 for our choice of the 2-colorings ¢, (o € S). In
order to show that Ext}z(A, B) # 0, we will recursively construct a homomorphism
f:+ K — B which cannot be extended to an element of Hompg(F, B).

First, fo : Ko — B is the zero map. Assume f, : K, — B is already constructed
for some o < k. We define fo41 : Kqq41 — B as follows:

We let fl = feif a ¢ S or c(a) = 0; otherwise, we let f! = f& + komo. In both
cases, we extend f! arbitrarily to a homomorphism f} : F,.1 — B, and define
Sas1 as fI | Kqy1. Since m,, | Ko = 0, in both cases

fa+1 rKa:f;_ fKaZf& fKang; rKa:fow

If a < &k is a limit ordinal, we put f, = UB<a fs. Finally, welet f = f., : K — B.

Assume there exists g € Hompg(F, B) such that g | K = f. By ®,(5), there is a
d € S such that ¢g [ V5 maps to Bs and ¢s(g [ Vs) = ¢(9).

Notice that f;7 — g | Fsy1 is zero on Ksiq1. Thus, there is a (unique) h €
Homp(Asy1, B) such that f;r — g | Fs41 = hmsyq. Let k = hus € Hompg(As, B).
Then

kms = husms = hmsy1vs = (fif —g | Fssr) | Fs = f5— g | Fs.

If ¢(6) =0, then (g | K5)* —g | F5s = f§ —g | Fs = f§ —g | F5 = kms. Thus k
is the (unique) homomorphism from As to B such that (g [ Ks5)¢ — g | F5 = kns.
As h is an extension of k to Asy1, we infer that ¢s(g | Vs5) = 1. However, § € S, so
¢s(g 1 Vs) = ¢(d) =0, a contradiction.

If ¢(0) = 1, then kns = f5 —g | F5s = f§ +ksms —g | Fs. So in this case
(91 Ks)¢—gl Fs=f5—g|Fs=(k—ks)ms. As cs(g [ Vs) =c(d) =1, k— ks can
be extended to As41. Since k = hug, the same holds for k, and hence for ks. This
contradicts our choice of ks. O

We finish this section by showing that the converse of Corollary 3.8(1) holds in
ZFC in the following strong form, called the Eklof Lemma [11, 6.2]:

Lemma 3.9. Let R be any ring and B any class of modules. Let A € Mod—R be the
union of any increasing continuous chain (A, | o < o) of its submodules (where o
is any ordinal), such that Exth(Aay1/Aa, B) =0 for each a < o and each B € B.
Then Exth(A, B) = 0 for all B € B.

Proof. Clearly, it suffices to prove the claim in the case when B is a singleton, that
is, B = {B} for some B € Mod-R. Let A, = A. By induction on a < o, we will
prove that Extk(Ay, B) = 0. The claim is then the case of a = o.

There is nothing to prove for a = 0, as Ay = 0. The induction step follows
from the exactness of the sequence 0 = Exth(Aqt1/Aa, B) = Exth(Aqi1, B) —
Exth(Aq, B) = 0.

Let @ < o be a limit ordinal. Let 0 - B = I 5 I/B — 0 be a short exact
sequence in Mod—R such that I is an injective module. In order to prove that
Ext}(Aq, B) = 0, we have to show that for each f € Homp(Aq,I/B) there exists
g € Hompg (A, I) such that f = 7g.

By induction on 8 < a, we will construct a sequence of homomorphisms gg €
Homp(Ag, I) such that ggy1 [ Ag = gp and mgs = f | A for each § < a. Then
wg = f will hold for g = U6<a 98-

First, go = 0. For the induction step, we first use the injectivity of I for extending
gs to some nn € Homp(Apgi1,I). Let § = f | Agy1 — mn. By the induction premise,
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d [ Ag =mgg—m(n | Ag) = 0. So there exists ¢ € Hompg(Ag+1/Ag, I/B) such that
d = emg where g : Ag11 — Agy1/Ag is the canonical projection.

Since Extp(Agy1/Ag, B) = 0, there also exists § € Hompg(Ag1/Ag, I) such that
e=m0. Let gg11 =1+ 0mg. Then gg41 [ Ag =1 [ Ag = gg. Moreover,

Tgp+1 =N+ 10mg =N+ emg =mn+06=f [ Agt1.

If 8 < o is a limit ordinal, we let gg = U7 <9 This completes our construction.
O

4. SINGULAR COMPACTNESS
In this section, we will prove the following;:

Theorem 4.1. Let R be a right hereditary ring, A be a singular cardinal, and M
a A-generated module such that each < A-generated submodule of M is projective.
Then M is projective.

Before proving Theorem 4.1, we derive its corollary that proves consistency of a
positive solution to the (generalized) Whitehead problem:

Corollary 4.2. Assume ®.

(1) Let R be a right hereditary ring of cardinality < wy such that each countably
generated Whitehead module is projective. Then each Whitehead module is
projective.

(2) Each Whitehead group is free.

Proof. 1. Let M be a Whitehead module and « be the minimal number of genera-
tors of M. By induction on k, we will show that M is projective. This is true for
Kk < Ny by the assumption on R.

For k regular uncountable, Corollary 3.8(1) yields a s-filtration (M, | @ < k) of
the module M such that M,1/M, is a Whitehead module for each o < k. By the
inductive premise, Myy1/M, is projective, so M,, is a direct summand in My41,
and M is projective, too.

If k is a singular cardinal, then the projectivity of M follows directly from the
inductive premise by Lemma 1.3 and Theorem 4.1.

2. This follows by part 1 and Theorem 1.6. t

Remark 4.3. 1. Part 1. of Corollary 4.2 applies to other hereditary rings besides 7Z,
e.g., to all non-cotorsion PID’s of cardinality < w; [6, XII.1.11], and to all simple
countable von Neumann regular rings that are not completely reducible [27, 3.19].

However, in [8], a non-cotorsion PID of cardinality 2! was constructed (in ZFC)
such that there exist non-free Whitehead modules — in fact, such that each wi-free
module is Whitehead. So part 1. does not apply to all non-cotorsion PID’s.

2. Recently, Clausen and Scholze have developed condensed mathematics in
order to overcome the problem that categories of topological objects of various
kinds are not abelian. In particular, for topological groups, this approach results
in considering the abelian category, CA, of condensed abelian groups which is an
enrichment of the category Mod—Z. Denote the enrichment of a group A € Mod-Z
(equipped with discrete topology) by A. If Whitehead groups are defined using the
internal Ext functor on CA (that is, A € Mod-Z is Whitehead, if Extg 4(A4,7Z) = 0),
then all Whitehead groups are free in ZFC, see [3, Session 8].

Theorem 4.1 is a consequence of a still more general result, the Singular Com-
pactness Theorem by Shelah [22] in the setting of modules. The latter says that
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given a suitable notion of a “free” module, for each singular cardinal A, a < \-
generated module M is “free”, provided that M is x-“free” for sufficiently many
regular cardinals kK < .

The suitability of the notion of “free” is defined by a list of required properties,
following the approach of [5] (see also [11, §7.4]):

First, a module M is “free” provided that there exists at least one “basis” X
of M, which is a set of subsets of M. A non-empty set B(M) of “bases” of M is
attached to each “free” module M.

A submodule N of a “free” module M is called a “free” factor of M, provided
that N is generated by some member of a “basis” of M; that is, N = (X) for some
XeB(M)and X € X.

Assume N is a “free” factor of a “free” module M. Then N is required to
be “free”, and a non-empty set B(M, N) is given, such that B(M, N) consists of
pairs of “bases” of M and N respectively. We will write Y = X | N in case
(X,Y) € B(M,N).

Let u be an infinite cardinal. The list of the required properties reads as follows:

Properties 4.4. For each “free” module M, and each “basis” X of M, the following
properties hold:

(P1) (closedness) 0 € X, and X is closed under arbitrary unions.

(P2) (u-Lowenheim-Skolem property) If X € X and a € M, then there exists
Y € X, such that X CY, a € (Y), and card(Y) < card(X) + p.

(P3) (compatibility) IfY,X € X and Y C X, then there exists Y € B((X)),
such that Y € Y. In particular, (Y) is a “free” factor of (X).

(P4) (basis extension) If N is a “free” factor of M and Y € B(N), then there
exists X € B(M), such that Y = X | N.

(P5) (free filtrations) 1If (Ds | d < p) is a continuous chain of “free” modules,
such that for each § < p, Ds is a “free” factor of Ds41, then U5<p Ds is
“free”.

(P6) (basis extension links) If (D, | n < w) is a chain of “free” modules, such
that for each n < w, D,, is a “free” factor of D,,11, and X,, € B(D,,) are
such that X,, = X, 41 [ D, for each n < w, then |J X, is contained in
some “basis” of |J,, .., Dn-

n<w

In order to prove Theorem 4.1, we will make use of the following particular
instance of the notions of “free”, “basis”, “free” factor, and B(M, N):

Definition 4.5. Let R be a ring. A module M is “free”, if it is projective. By
Kaplansky’s Theorem [1, 26.2], M is then a direct sum of countably generated
projective submodules, that is, M = @,.;(G;) where G; is a countable set of
elements of M and (G;) is a projective submodule of M for each ¢ € I. Let
X = {Uje;Gj | J € I}. Then X is “basis” of M, and each “basis” of M is
obtained in this way from some direct sum decomposition of M into a direct sum
of countably generated projective modules.

A submodule N of M is a “free” factor of M, provided that N is generated by
some member of a “basis” of M, that is, provided that N is a direct summand
in M. The set B(M,N) is defined as the set of all pairs (X,)) such that X is a
“basis” of M, ) is a “basis” of N;and Y ={X € X | X C N}.

In other words, Y = X [ N, it X = {U,c; G, | J C I} where G; is a countable
set of elements of M such that (G;) is a projective submodule of M for each
i€ I, M =@, (G, there is a subset K C I such that N = @, _;(Gy), and
Y ={Ue Gi | L € K}. Notice that (X,Y) € B(M,N) implies Y C X, but the
converse need not hold in general.
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Using elementary properties of direct sum decompositions, one easily verifies the
following

Lemma 4.6. For any ring R, the particular instances of the notions of “free”,
“basis”, “free” factor, and B(M,N) from Definition 4.5 satisfy Properties (P1)-
(P6) from 4.4 for p=w.

In order to state the general version of the Singular Compactness Theorem for
modules, it remains to define the notion of a k- “free” module:

Definition 4.7. Let x be a regular uncountable cardinal and M be a module.

(1) M is k-“free”, provided there exists a set S consisting of < k-generated
“free” submodules of M, such that 0 € S, each subset of M of cardinality
< k is contained in an element of S, and S is closed under unions of well-
ordered chains of length < k.

(2) M is strongly k- “free”, provided there exists a set 7 consisting of < k-
generated “free” submodules of M, such that 0 € T, and for each N € T
and each subset X C M of cardinality < k, there exists N’ € T such that
NUX C N and N is a “free” factor of N'.

The sets S and T are said to witness the k-“freeness” and strong k- “freeness” of
M, respectively.

Example 4.8. Let s be a regular uncountable cardinal > p. Then each “free”
module M is both k- “free” and strongly x-“free”.

Indeed, if X is any “basis” of M, then the set of all submodules N of M of the
form N = (X), where X € X and card(X) < k, witnesses both the k-“freeness”
and the strong k-“freeness” of M, by properties (P1), (P2), and (P3).

Let’s have a closer look at these notions in the particular setting of Definition
4.5. Since in this setting, “free” means projective, the standard terminology for
K- “free” is k-projective, and for strongly x-“free”, it is strongly k-projective.

wi-projective modules over any ring can equivalently be characterized as the
flat Mittag-Leffler modules by [11, 3.19]. In the hereditary setting, we have the
following characterization:

Lemma 4.9. Let k be a reqular uncountable cardinal and R be a right hereditary
ring. Let M € Mod—R.

(1) M is k-projective, if and only if all < k-generated submodules of M are
projective.

(2) If M is strongly k-projective, then M is k-projective.

(3) M is strongly k-projective, iff M is k-projective, and for each subset X of
M of cardinality < k there exists a < k-generated projective submodule P
of M containing X, such that Q/P is projective for each < k-generated
submodule Q of M containing P.

Proof. 1. The only-if claim is clear, since over a right hereditary ring, the class of
all projective modules is closed under submodules. For the if-claim, it suffices to
let S be the set of all < k-generated submodules of M.

2. Since T consists of < k-generated projective modules, and each subset X C M
of cardinality < k is contained in an element of 7, each < k-generated submodule
of M is projective, and part 1. applies.

3. Let T be a set witnessing the strong x-projectivity of M. Let X be a subset
of M of cardinality < k. Since 0 € T, there exists P € T such that X C P. Let
Q@ be any < k-generated submodule M containing P and Y be a set of cardinality
< k such that @ = (Y'). Then there exists N’ € T such that Y C N’ and N’'/P is
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projective. Since R is right hereditary, also Q/P is projective. The k-projectivity
of M follows by part 2.

In order to prove the converse, let 7 be the set of all < k-generated submodules
P of M such that /P is projective for each < k-generated submodule @ of M
containing P. By part 1., T consists of projective modules and 0 € 7. Let N € T,
let Y be a set of generators of IV of cardinality < k, and X be any subset of M of
cardinality < k. Then there exists a < k-generated projective submodule P of M
containing X UY, such that Q/P is projective for each < k-generated submodule
Q of M containing P. Let N’ = P. Then N’ € 7. Since N € T, the module N'/N
is projective. Thus T witnesses the strong k-projectivity of M. O

By part (1) of Lemma 4.9, in our original setting of groups, the notions of an
wi-projective module and an w-free group from Lemma 1.4(1) coincide. The best
known example of an w;-free group which is not strongly wi-projective is the Baer-
Specker group Z¥, [24]:

Lemma 4.10. Let R = Z and \ be any infinite cardinal. Then the group 7> is
w1-free, but not strongly w1 -projective (and hence not free).

Proof. For a subset J C ), we will denote by Z”’ the direct summand in Z* con-
sisting of all the (z, | @ < \) € Z* such that z, =0 for all a € A\ J.

By Lemma 1.4, in order to show that Z* is w;-free, it suffices to prove the
(stronger) claim that each finite rank pure subgroup A of Z* is a free direct sum-
mand in Z*.

First, we prove that each z = (z, | @ < \) € Z* is contained in a cyclic direct
summand of Z*. Let 1 < m < w be the greatest common divisor of all the x,
(o < A). Let I be a finite subset of A such that m is also the greatest common
divisor of the z; (i € I). Let y = m~ 'z € Z*.

For each z € Z*, let 2’ be the restriction of z to I, that is, 2/ € Z! is such that
z} = z; for each 7 € I. Since the greatest common divisor of the y; € Z (i € I) is
1, the group Z!/y'Z is torsion-free and finitely generated, hence it is free. So y'Z
is a free direct summand in Z!. Let x1,...,2; € Z* be such that {y/,z},...,z}}
is a free basis of Z!. Then yZ @ (P'_, #,Z) ® (Z*\1) = Z*, whence yZ is a direct
summand in Z* containing x.

Now, let A be any pure subgroup of Z* of finite rank. By induction on its rank,
n, we will prove that A is a free direct summand in Z*. There is nothing to prove
forn =0. Let 0 # 2 € A and let y = m~ 'z be as above. Since A is pure in Z* and
7> is torsion-free, necessarily y € A. Also Z* = yZ & C for some C C Z* by the
above. Then A = yZ ® (AN C), where AN C has rank n — 1, and being a direct
summand of the pure subgroup A, AN C' is also a pure subgroup in Z*. So AN C
is a free direct summand in Z* by the inductive hypothesis. Hence A is free, and
C=(ANC)® D for some D C Z*, 50 Z* = A® D.

In order to prove that Z* is not strongly w-projective, we will show that for each
countable subgroup Z“) C H C 7Z¥ C Z* there exists a countable group G such
that H C G C Z¥ and G/H is not free. This will suffice: since we have already
proved that Z* is wi-free, by Lemma 4.9(1) and (3), we only have to show that
there exists a countable subgroup X of Z* such that for each countable subgroup
P of Z> containing X there exists a countable subgroup @Q of Z* containing P such
that Q/P is not free. However, we just let X = Z®) and for H = PNZ* we find a
corresponding G C Z*. Then putting Q = P+ G, we see that Q/P =2 G/(PNG) =
G/H is not a free group.

Finally, let p be a prime integer. Since the group [], ., p"Z C Z* is uncountable,
there exists = (x, | n < w) € Z¥ \ H such that z,, € p"Z for each n < w. Let
G be a countable pure subgroup of Z* containing H U {z}. Since Z(*) C H, the
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element 0 # x + H € G/H is divisible by p™ for each n < w. Thus, G/H is not a
free group. O

Remark 4.11. 1. If R is not right hereditary, then our terminology may be mis-
leading, as the implication from Lemma 4.9(2) need not hold in general: for each
regular cardinal k > wy, there exists a ring R, and a module M, such that M, is
strongly k-projective, but not k-projective, [26].

2. The question of the existence of a k-projective, but not free, group of cardi-
nality & for a given regular uncountable cardinal can be translated (in ZFC) into
a combinatorial statement, called NPT(k), concerning existence of tranversals for
families of size x consisting of countable sets, cf. [6, VII.3.13]. NPT(x) is known
to fail for all (regular) weakly compact cardinals, [6, IV.3.2]. In view of Lemma
4.10, it may come as a surprise that NPT(x) can be used to show in ZFC for each
regular uncountable cardinal , that the existence of a k-projective, but not free,
group of cardinality « implies also the existence of a strongly x-projective, but not
free, group of the same cardinality, [6, VII.3A].

3. The properties of the groups Z* proved in Lemma 4.10 are the same for each
infinite cardinal A. This contrasts with the properties of the groups Zy = Z*/Z<*,
where Z<* denotes the subgroup of Z* consisting of all the sequences z = (x4 |
a < A) whose support supp(z) = {a < A | z, # 0} has cardinality < A.

By [6, IX.3.5], Z) is wi-free for each infinite cardinal A of uncountable cofinality
(in particular, for all A = R,, where 1 <n < w).

However, Z, = 7% /Z(“’) is not wy-free: Z,, is a pure-injective torsion-free group
by [6, V.1.16]. In fact, Z, = Q*" @Hpe]P’ A, where A, denotes the p-adic completion

of the group JI(?W), J, the group of all p-adic integers, and IP the set of all prime
integers (cf. [6, Ex. V.4]).

The version of Shelah’s Singular Compactness Theorem that we are going to
prove here is

Theorem 4.12. Let R be a ring, p be an infinite cardinal, A a singular cardinal
> i, and M be a < A-generated module. Assume that M is k- “free” for each reqular
cardinal p < k < X, and the notion of “free”, “basis”, “free” factor, and B(M,N)
satisfy Properties (P1)-(P6). Then M is “free”.

Notice that in view of Lemma 4.6, Theorem 4.12 implies Theorem 4.1.

The proof of Theorem 4.12 will proceed in two steps, following [5] and [6, §IV.3]
(which in turn was inspired by [12]). For the first step, we need a set-theoretic fact:

Lemma 4.13. Let k be an infinite cardinal. Then there is a bijection ) : k = KX K
such that for all v < k, if Y(v) = (o, T) then o < v.

Proof. Since card(k) = card(k X k), it suffices to prove that an arbitrary bijection
¢ : k — K X Kk can be modified to a bijection 1 as in 4.13.

By induction on 8 < k, we define a sequence of bijections ¢g : K = KXk (8 < k),
and a continuous chain (Sg | § < k) of subsets Sg C k such that § C Ss for each
B < K, card(Sg) < k for each 8 < &, and the following four conditions are satisfied
for each 8 < k:

(1) If Yg(v) = (o, 7) and v € Sp, then a < v (4.13 restricted to Sg),

(25) ¥a(p) = o (p) for each v < 8 and p € S, (compatibility of the sequence),

(3p) ¥a(v) = ¢(v) for all v ¢ Sp (local relation to ¢ outside Sg), and

(45) ¢(Sg) = 1¥p(Ss) (global relation to ¢ on Sg).

First, ¥g = ¢ and Sy = (. In the inductive step for 8 < k, we distinguish two
cases:
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Case 1: 9g(8) = (7, p) for some v < 5 and p < k. Then we define 5+1 = g
and Sgy1 = S U {G}.

Case 2: ¥3(8) = (v, p) for some v > B and p < k. Then 3 ¢ Sz. Moreover, 9
is a bijection, whence the set T consisting of all § < « such that ¢3(d) = (0, 7) for
some 7 < k has cardinality k. Since card(Sg) < k, there exists d3 € Tz such that
dg > v and 0g ¢ Sz. Let Sgr1 = Sp U {8,035}, and define ¢p11 as g, but with
swapped values at 8 and dg. That is, g11(p) = ¥(p) for all p < kT different
from B and g, Yp1+1(8) = ¥5(dp), and p11(dg) = ¥a(B).

In either case, 341 is clearly a bijection, and conditions (141)-(4+1) hold by
the inductive premise and by our construction of the 1g41.

If < £ is a limit ordinal, we define Sg = |J,_5S,(2 B). For § ¢ Sg, we let
() = ¢(d), so (3g) holds. For § € Sa, let v < 3 be the least (non-limit) ordinal
such that 0 € S,. We define ¢3(d) = 1,(5). Since 6 ¢ Sy_1, either § =y —1
or § = dy_1. So (1) follows from (1) for v < B. Moreover, in the case when
d=~v—1,v3(y—1) =1, (y—1), whence (23) follows from (2,) for v < 3. Finally,
6(85) = Uy 0(83) = U <y (85) = U g 5(S5) = 15(S5) by (4,) for 7 < B,
and by (23). Thus (4g) holds. By (23), 1 is monic at Sg, and (3g) implies that
1 is monic at k \ Sg. By (3g) and (43), Y3 is surjective.

Finally, let ¥ = v,. Then % is a bijection, and since Sy = k, condition (1) is
just the claim of 4.13. (|

Now, we can make the first step:

Lemma 4.14. Let R be a ring, p be an infinite cardinal, k be a regular cardinal
> u, and M be a k™ -“free” module. Then M is strongly k- “free”.

Proof. For any < k-generated “free” submodule N of M, we define the N-Shelah
game for two players, I and II, with moves indexed by natural numbers, as follows:
In the nth move, player I plays a subset X,, of M of cardinality < x, and player II
replies with a < k-generated submodule NV,, of M containing N. Player II wins, in
case for each n < w, N, is a “free” module containing N,,_; U X,, such that N,_;
is a “free” factor of N,, (where N_; = N); otherwise, player I wins.

A winning strategy for player I the N-Shelah game is a function sy that gives the
0th move Xy = sy (N) of player I, and then his nth move X,, = sy(No, ..., Np—1)
for each 0 < n < w, so that player I wins, that is, after some move X,, of player I,
there exists no “free” submodule N,, of M containing N,,_; U X,, such that N,_;
is a “free” factor of N,,.

We claim that player I does not have a winning strategy in the 0-Shelah game.
If so, then we can define T as the set of all < k-generated “free” submodules N of
M such that player I does not have a winning strategy in the N-Shelah game.

By our claim, 0 € 7. Let N € T and X be a subset of M of cardinality < k.
Consider the N-Shelah game where the Oth move of player I is Xg = X. Let Ny be
the 0th move of player II; it is available because N € T . In particular, NUX C N,
and N is a “free” factor of Ny. Moreover, player I cannot have a winning strategy
in the Np-Shelah game (otherwise, he would also have a winning strategy for the
N-Shelah game). Thus Ny € T. Hence T witnesses that M is a strongly &-“free”
module.

It remains to prove our claim. We will do it by contradiction. Assume s = s is
a winning strategy for player I in the 0-Shelah game. Let S be the set witnessing
that M is a kT-“free” module. By Lemma 4.13, there is a bijection v : k — k X K
such that for all v < &, if ¥(v) = (o, 7) then a < v.

By induction on v < x we will define a continuous chain (N, | ¥ < &) consisting
of < k-generated submodules of M, and select from S a continuous chain of modules
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(F, | v < k) together with sets of generators, {g7 | 7 < k} of F, so that N, C F,
for each v < k as follows: First, let Ny = 0, and let Fjy € S be arbitrary.

If v is a non-limit ordinal, we take N, so that g7, € N,, where ¢(v — 1) = (a, 7).
This is possible since a < v, so g7 is already defined. Moreover, we can also assume
that N, contains s(0) and s(Nq,, ..., N, ) whenever k > 1, a3 < -+ < a; < v and
$(Nays -+, Ny, ) is defined. This is possible since there are < s such sequences of
ordinals < v. Since S witnesses the xT-“freeness” of M, we can select F,, € S such
that N, UF,_1 C F, and take a generating set {g7 | 7 < k*} for F,.

If v is a limit ordinal, we let N, =, ., No, F, = U, ., Fr €S, and {g] | 7 <
ﬂ} = Ua<u{g; | T < K}'
Let F = U,..N,. Clearly, ' C |J,, F,, and the opposite inclusion holds

because v is a bijection: by construction, if p < & is such that ¥ (u) = («, 7), then
9%, € Nyy1. Thus F =, F, €S. Let X be a “basis” of F.

Let C = {a < k| N, = (X4) for some X, € X such that card(X,) < k}. We
claim that C' is unbounded in x: Indeed, if ¥ < k, then by induction on n < w,
we can define a strictly increasing chain of ordinals < k, v = vy < 11 < ...,
and a chain of elements of X, Xg C X; C ..., so that X,, has cardinality < &,
and N,, C (X,) € N,,,, for each n < w. This is possible since u < &, by the
properties (P1) and (P2) of X' from 4.4. Let o = sup, ., ¥n. Then N, = (X)
where X = J, ., X» € & by property (P1),so a € C, and v < a.

Finally, we show how player II can defeat the strategy s: for each n < w, he
plays N,, for some «, € C so that ap < a3 < ... as follows: first, since C is
unbounded, there is ap € C such that s(0) € N,, = (X4,). Similarly, in the
(n 4 1)th move, player II takes a,4; € C such that o, < ani1, Xo, € Xa, s
and s(Nags -+ -, Nay_y) € Napsy = (Xan,,)- Since Xo, € Xq, .1, No, is a a “free”
factor of N, by property (P3). d

Qn 41

Lemma 4.9(3) yields a much simpler proof of Lemma 4.14 in the particular setting
of Definition 4.5 for right hereditary rings:

Lemma 4.15. Let R be a right hereditary ring, k a regular uncountable cardinal
> u, and M a k™ -projective module. Then M is strongly k-projective.

Proof. By Lemma 4.9(1), M is k-projective. Assume M is not strongly x-projective.
Then by Lemma 4.9(3), there exists a subset X of M of cardinality < & such
that for each < k-generated projective submodule P of M containing X, there
exists a < k-generated submodule @ of M containing P such that /P is not
projective. This makes it possible to construct, by induction on a < &, a k-filtration
N = (N, | @ < k) such that Ng =0, N1 = (X)), and Ny+1/N, is not projective for
each 0 < a < k. Let N = J, ., Na. Then N is < x-generated, but not projective,
in contradiction with the assumption that M is kT-projective. Indeed, if N were
projective, then the x-filtration N of N would have to coincide on a club C in &
with the k-filtration induced by the direct sum decomposition of N into a direct
sum of countably generated projective modules. Since R is right hereditary, this
would contradict the fact that consecutive factors of A/ are not projective. O

In view of Lemma 4.14, the proof of Theorem 4.12 will be complete once we
prove

Lemma 4.16. Let R be a ring, i an infinite cardinal, A > p a singular cardinal,
and M a A-generated module, such that M is strongly k*-“free” for all cardinals
w<rK <A Then M is “free”.

Proof. Let 7 = cf(\). Then 7 < A by assumption, and there exists an increasing
continuous sequence of cardinals, (x5, | ¥ < 7), whose supremum is A, and such that
Ko > p and kg > 7. Since M A-generated, we can choose a generating subset G of
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M of cardinality A, and an increasing continuous chain of subsets of G, (G, | v < 7),
such that card(G,) = s, for each v < 7and G =UJ,., G..

By induction on n < w, we will construct, for all v < 7, the following objects: a
subset C}' of M of cardinality < k,, a < k,-generated “free” submodule F}} of M,
a “basis” X' of F)}, and an element X' € X' | of cardinality < &,.

We will require that these objects satisfy, for all n < w and v < 7, the following
conditions:

(C1) G, C Fr C(C) € Fot;

(C2) Fmis a “free” factor of FnFL and X7 = X0+t | F7;

(C3) Cp—!' C Cp for each p < v;

(C4) (X7) € (Xp™) and X} € C;

(C5) Cp~t S (XpH).

Moreover, we will require the following condition:

(C6) (C, | v < 7) is a continuous chain of submodules of M, where C, =
Un<o(CF) for each v < 7.

Assume that the construction above is possible. Then, by (C1), C, = |J EFy

n<w = vV
and |J,., C, = M. By (C2), and the properties (P5) and (P6), C, is “free”, and
Un<o &) is contained in a “basis” of C,, say &,. Moreover, by (C4) and (C5),
C, is generated by X, = J, ., X', and X, € &, 1 by property (P1). So C, is a

“free” factor of Cy41. Finally, (C5) and property (P5) yield that M is “free”.

For the construction, we first fix, for each v < 7 a set 7, witnessing the strong
K -“freeness” of M. At the nth stage of the construction, we will define for all v < 7
the modules F* € T, the “bases” X of F, subsets C7~! of M of cardinality < k,,
X € &)y, of cardinality < x,, and sets {u}, | @ < x,} of generators of I as
follows:

For n = 0, we choose F? € T, so that G, C F?, X0 € B(F?), and let C,! =
X2 =0.

In the inductive step, we first define C}) = X UU <, Cg’l U{up o lp<7a<
ky}. Since C} contains {uy , | @ < K, }, by the inductive premise F’ C (C}}). So
we can take F*t! € T, so that C C F?! and F is a “free” factor of F7'™!. By
property (P4), we can choose Xt € B(F?*1) so that X = X2+ | F. Then
clearly conditions (C1)-(C3) hold true for n.

Next, we take X! € XN of cardinality < k, so that (XI') C (XI*!) and
Crn FME C (XPFY). This is possible by properties (P1) and (P2). Thus (C4)
holds for n.

Since C?~1 C C7,
FrEE C(Xp+hy, and (C5) holds for n.

It remains to prove condition (C6). First, (C, | v < 7) is a chain of submodules of
M by (C3), so we only have to verify its continuity: Let v < 7 be a limit ordinal. By
(CL), Oy = Uy B = U, | @ < 103) = Uy, Uy (2o | @ < 1, }),
where the latter equality holds because r., = sup, ., k.. Note that C} contains uj, ,
for all p < 7 and a < Ky, so the latter union is contained in U, ., U, (C}). As
Cy = U<, (C}), we infer that C, C U,
so we conclude that C, =J,_. C., g.e.d. O

and CP~t C O, C FrH! by (C1), we have 271 C €N

C,,. The opposite inclusion is obvious,
vy

Remark 4.17. 1. The particular setting of Definition 4.5 can easily be generalized
as follows: we take any set C consisting of < p generated modules and call a module
M “free”, if it is isomorphic to a direct sum of modules from C. Then the notions
of a “basis”, “free” factor, and B(M, N) can easily be adapted so that properties
(P1)-(P6) from 4.4 hold for y, and Theorem 4.12 extends to this generalized setting
(see [5, §2.IT] for more details). The particular setting of projective modules from
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Definition 4.5 is just the case when p = w and C = a representative set of all
countably generated projective modules.

The general form of 4.4 even makes it possible to consider settings far beyond pro-
jectivity or decomposition into direct sums of modules from a given set C. Instead
of direct sums (= possibly infinitely iterated, but split, extensions), one considers
infinitely iterated, but not necessarily split, extensions of modules from C. Then a
module M is “free”, if M is a transfinite extension of modules from C. For more
details on this setting, we refer to [5, 2.III] and [11, 7.4]; its applications are far
reaching: one can prove structure results for Baer modules [11, §14.3], a finite type
theorem for infinitely generated tilting modules [11, 13.46], etc.

2. In all the settings mentioned in 1., the relation B(M, N) satisfies (X,)) €
B(M,N),iff Yy ={X € X | X C N}. Hence Y = X | N implies Y C X. In
particular, the sets X' (n < w) constructed in the proof of Lemma 4.16 can be
chosen to form a chain. Thus, in order to prove Theorem 4.12 in these settings, it
suffices to verify property (P1) of the “bases” X in the weaker form of continuity:

(P1’) (continuity) O € X, and X is closed under unions of arbitrary chains.
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