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ABSTRACT: 

 

Automated close-range photogrammetric network orientation and camera calibration has traditionally been associated with the use of 

coded targets in the object space to allow for an initial relative orientation (RO) and subsequent spatial resection of the images. 

However, over the last decade, advances coming mainly from the computer vision (CV) community have allowed for fully automated 

orientation via feature-based matching techniques. There are a number of advantages in such methodologies for various types of 

applications, as well as for cases where the use of artificial targets might be not possible or preferable, for example when attempting 

calibration from low-level aerial imagery, as with UAVs, or when calibrating long-focal length lenses where small image scales call 

for inconveniently large coded targets. While there are now a number of CV-based algorithms for multi-image orientation within 

narrow-baseline networks, with accompanying open-source software, from a photogrammetric standpoint the results are typically 

disappointing as the metric integrity of the resulting models is generally poor, or even unknown. The objective addressed in this 

paper is target-free automatic multi-image orientation, maintaining metric integrity, within networks that incorporate wide-baseline 

imagery. The focus is on both the development of a methodology that overcomes the shortcomings that can be present in current CV 

algorithms, and on the photogrammetric priorities and requirements that exist in current processing pipelines. This paper also reports 

on the application of the proposed methodology to automated target-free camera self-calibration and discusses the process via 

practical examples. 

 

 

1. INTRODUCTION 

Automated generation of high density point clouds from images 

has nowadays become a relatively standard procedure. An 

important step, however, that precedes such 3D reconstruction, 

is camera calibration and network orientation, which are 

required for the subsequent step of dense stereo matching. Until 

recently, there were only a few software packages that fully 

supported such workflows. However, the advent of UAVs has 

attracted a lot of attention in both industry and academia and 

this has resulted in an increase in the availability of software 

systems for automated orientation and digital surface model 

generation. 

 

For aerial photogrammetric datasets, the image capture process 

tends to be more structured. In many cases the interior 

orientation (IO) is already known and the positional part of the 

exterior orientation (EO) can be obtained from a GPS device. 

This allows for a much more flexible way of processing, since 

already a number of EO parameters values, as well as 

information with regard to image overlap, is readily available. 

Nonetheless, even in the case where no information is available, 

the imagery of aerial photogrammetric datasets is more 

straightforward to process compared to the typical case of close-

range photogrammetric networks that exhibit different 

viewpoint angles, camera orientations and scales, as well as 

higher convergence between the images. 

 

Tools for the automated network orientation are available, with 

the majority emanating mainly from the CV community. In 

most cases, the process involves the selection of images, with 

the end result being both a fully oriented multi-image network 

and a 3D model in the form of either a point cloud or a mesh. 

These software packages utilise a feature descriptor matching 

approach for the image point correspondence determination, 

which is further refined by a RANSAC methodology based 

either on the fundamental or homography matrices (e.g. 

Barazzetti, 2011a, Remondino et al., 2006, Abdel-Wahab et al., 

2011). This procedure is commonly referred to as Structure 

from Motion (SfM). 

 

However, SfM approaches are typically subject to accuracy 

limitations and also to constraints upon image network 

geometry due to the adoption of linear algorithms. As an 

example, a common feature of CV algorithms is that they 

perform optimally on narrow-baseline, low-convergence 

imagery. Yet, convergent imaging configurations are generally 

a prerequisite for reliable camera self-calibration and thus any 

multi-view stereo approach must accommodate wide as well as 

narrow baselines (image-to-image separation). Thus, in order to 

become more applicable to close-range photogrammetric 

measurement tasks, automated target-free network orientation 

needs to accommodate the multi-image, convergent network 

configurations that characterise high-accuracy (say sub-pixel) 

close-range measurement operations. Moreover, it is essential 

that rigorous quality measures in relation to accuracy, precision 

and reliability for parameters of both image and object space are 

generated,. This is generally not the case for CV-based 

algorithms and associated software tools. In the absence of 

quality metrics, the most basic being the estimated precision of 
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object point coordinate determination, there is limited utility 

beyond visualisation in CV-based 3D model reconstruction. 

Nonetheless, the adoption of SfM and multi-view stereo 

approaches in close-range photogrammetry has been rapid, 

especially in UAV applications. However, there has been less 

attention paid to the prospect of utilising these same approaches 

for stand-alone camera calibration, though the prospect has been 

recognised (eg  Barazzetti et al., 2011b; Stamatopoulos & 

Fraser, 2013). While targeting continues to be widely used, 

especially in high-accuracy industrial and engineering 

measurement where precise positioning of specific object points 

is central to many dimensional metrology tasks, the use of 

artificially signalised points and especially coded targets, is 

nevertheless inconvenient in an increasing number of 

applications. Two examples are networks of images captured 

from UAVs and measurements over longer distances with 

lenses of long focal length, the required coded targets being 

inconveniently large in both instances. 

 

This paper discusses the development of a processing pipeline 

designed to facilitate automatic photogrammetric network 

orientation and camera calibration in convergent, multi-image 

and possibly multi-camera networks in the absence of targets. 

An important development objective has been optimization of 

algorithmic efficiency in recognition of the computationally 

expensive nature of SfM methodologies. In pursuit of the 

objective of minimising computation time, selected algorithms 

have been implemented to run in parallel either in the CPU or 

GPU. 

 

 

2. AUTOMATED NETWORK ORIENTATION 

The proposed five-stage methodology for automatic orientation 

of convergent multi-image and multi-camera networks is laid 

out in Figure 1, with the stages being: 

1. Initial point correspondence determination, 

2. Point correspondence refinement, 

3. Identification of additional point correspondences, 

4. Epipolar mismatch filtering, and 

5. Network orientation. 

 

2.1 Initial Point Correspondence Determination 

Point correspondence determination is arguably the most 

important step in fully automated network orientation. Typically 

in photogrammetry, this is achieved via arrays of coded or other 

types of artificial targets that are placed in the object space to 

facilitate the identification of common points between the 

images. In target-free networks, the point correspondence 

determination commences with the familiar feature extraction 

stage, via algorithms such as SIFT (Lowe, 1999) or SURF (Bay 

et al., 2008), something that is commonly known as feature 

based matching (FBM). Remondino (2006) presents an 

overview of various feature detector and descriptor algorithms 

that have potential use in photogrammetric applications. 

Nowadays there is a plethora of new detection and/or descriptor 

algorithms that can be adopted for point correspondence 

determination. Examples are BRIEF (Calonder, 2010), ASIFT 

(Yu, 2011) ORB (Rublee, 2011), BRISK (Leutenegger, 2011), 

FREAK (Alahi, 2012) and A-KAZE (Alcantarilla, 2012, 2013). 

  

The image points detected in this first step of the proposed FBM 

process are salient features of the linear and sometimes non-

linear scale-space of the image (depending upon the chosen 

detector). They are described based on the distribution of image 

gradients and/or image intensities (depending upon the chosen 

descriptor algorithm). The extracted feature points along with 

their descriptors are also known as keypoints. Feature point 

descriptors have been traditionally represented as a vector-based 

feature with a dimension of either 64 or 128 and they are 

utilised to match points in different images. However, nowadays 

there is a growing interest in binary-valued features, e.g. those 

produced via BRIEF, ORB and FREAK, since they have the 

advantages of being faster to compute and more compact to 

store. Also, their comparison is more efficient (Muja, 2012). 

 

 
 

Figure 1. Flowchart of the proposed methodology 

 

Regardless of the descriptor algorithm used, the aim is to 

describe a scale and rotation invariant feature with the purpose 

of determining matching points in different images. For vector-

based features, the Euclidean length of the descriptor vector is 

used to quantify the level of correspondence. When binary-

valued features are used, the Hamming distance is employed as 

a measure. Thus, the process of finding point correspondences 

for a pair of images, known as a nearest neighbour (NN) search, 

involves the calculation and comparison of all the descriptor 

lengths or Hamming distances in order to find the best possible 

matches. 

 

For vector-based features, especially, the computation of all NN 

within a dataset with high dimensionality is a difficult task. For 

this reason, optimised data structures have been employed in 

order to speed up the search. Various researchers, e.g Lowe 

(1999) and Barazzetti (2011a), have proposed the use of a kd-

tree to organize the data and optimise the calculation of NN 

searches. The computational cost of the NN search, after 
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building the kd-tree, is O(logN) compared to O(N) when a 

simple linear search is performed. While the kd-tree algorithm 

offers various advantages it can also suffer from what is known 

as the curse of dimensionality. For a large number of points, and 

especially for high dimensionality cases of descriptor lengths of 

64 or 128, the speed of the algorithm is only slightly better than 

a linear search of all points. For this reason, approximate NN 

search has been preferred to exact NN search. In the algorithm 

developed for the reported method, the Fast Library for 

Approximate Nearest Neighbours, FLANN (Muja and Lowe, 

2009) has been used. The FLANN library is implemented in 

such a way that it allows data to be stored in a randomised 

forest of kd-trees in order to improve the effectiveness of the 

calculations for high-dimension cases. Additionally, the search 

operation is performed in parallel within available CPU cores. 

The kd-tree is a highly scalable algorithm and the availability of 

each extra CPU core can halve the search time. Alternatively, a 

NN search running on the GPU can be used, as proposed by 

Stamatopoulos et al. (2012). 

 

While binary-based feature distances are much faster to 

compute and match, linear search is only practical in small 

datasets. For large datasets, it becomes impractical and in a 

similar way to the vector-based descriptors an approximate 

matching algorithm has to be used to speed up the process. 

Most of the approximate nearest search algorithms for binary 

features are based on hashing algorithms, e.g. locality sensitive 

hashing (LSH) (Rublee, 2011), semantic hashing 

(Salakhutdinov, 2009) and min-hash (Zitnick, 2010). However, 

Muja (2012) proposed a novel algorithm based on hierarchical 

decomposition of the search space that outperforms most 

hashing algorithms. This algorithm is also available as part of 

the FLANN library.  

 

The use of coded targets precludes mismatching of image 

points, but this is not so for FBM. NN matching methods will 

always return a match, that being the closest match. In addition, 

with repetitive patterns and similarities that are present in the 

image space false matches are inevitable. Thus, this procedure 

produces both valid point matches and a large percentage of 

outliers. The prime objective is then to develop a methodology 

to effectively filter out erroneous 2D feature point matches 

within image pairs, such that the remaining valid matches can 

be used to perform a robust RO, followed by successive 

resections, spatial intersections and bundle adjustments to 

achieve an automated network orientation to sub-pixel accuracy. 

 

2.2 Point Correspondence Refinement 

An advantage of optimised structures such as the kd-tree is their 

ability to also perform k-nearest neighbor searches (kNN). This 

allows the calculation of not only the best match for a point, but 

potentially the k best matches as well. This information can be 

used for the point correspondence calculation stage to filter 

similar descriptor vectors. The filtering can be achieved by 

setting a criterion so that the difference in the descriptor length 

or Hamming distance, of the first and second best match for 

each point is more than 70%, for example. It should be noted, 

however, that this does not ensure that a keypoint is uniquely 

matched, and consequently an additional filtering process has to 

be performed so that a one-to-one relationship between the 

feature point matches is ensured. 

 

For the next step, a histogram is built using the keypoint 

matches that have passed the first two stages of filtering. More 

specifically, the size and rotation of the descriptors are used to 

create a 2D histogram, essentially a 3D plot. The matched 

features whose scale and rotation do not agree with the majority 

are then removed from the list of valid matches. In this plot the 

x axis represents the bins of the keypoint scales and the y axis 

the bins of the rotations scales. The z axis is the number of 

counts for each combination of the scale and rotation bins. 

 

Next, a RANSAC approach utilizing the fundamental matrix is 

employed with the purpose of further filtering the point 

correspondences for each image pair, the algorithm employed 

being the 5-point algorithm of Nistér (2004). RANSAC 

algorithms perform well when at least 50% of the input is 

inliers, which explains the reason for all the filtering steps 

leading up to this stage. After the RANSAC process, a least-

squares adjustment involving all the inliers is performed in 

order to improve the accuracy of the calculated fundamental 

matrix. 

 

2.3 Identification of Additional Point Correspondences 

Under the assumption that a successful initial image point 

correspondence solution has been obtained and the geometry of 

the image pair can be described to an extent by the fundamental 

matrix, it is now possible and desirable to try to identify 

additional matches. While this step may not be needed in many 

cases where there is a large overlap between the images, for 

networks where there is less overlap and wider baselines it is 

helpful to increase the number of keypoint matches to achieve a 

more robust network orientation. 

 

At the initial stage of the previous filtering procedure, a large 

number of matches are filtered out due to the distance ratio 

criterion. However, there is a real prospect that among those 

correspondences there are many that are valid. Having already 

calculated the fundamental matrix it is possible to test the 

validity of all the points matched during the kNN search by re-

projection of each point correspondence and a check of the 

resulting residuals from the epipolar line. This calculation not 

only involves the first best match, but also the second nearest 

neighbor match as well, as there is a possibility that it could 

actually be the valid one. A point correspondence is accepted as 

valid when only one of the two neighbours is valid. Otherwise, 

they are both discarded since it is impossible to identify the one 

that is valid. It can be shown experimentally that this step can 

significantly increase the number of keypoint matches for pairs 

of images, with the associated computation cost being 

insignificant. 

 

It should be noted that the use of the fundamental matrix at this 

as well as previous stages implies that the matching is not 

performed in 2D space, as with the homography matrix. It 

instead involves the calculation of a distance to an epipolar line. 

While the results of this stage can be used to successfully 

perform a RO using the coplanarity equation model, a number 

of epipolar mismatches generally remain among the point 

correspondences. Such mismatches may not pose a problem for 

the RO of an image pair, but they can be quite problematic at a 

later stage when more images are involved, especially at the 

subsequent image resection stage. The problem can be mitigated 

to a considerable extent via adoption of a RANSAC resection 

algorithm. However, it is preferable that any outliers are dealt 

with at an earlier rather than later stage, as will now be 

explained. 

 

2.4 Epipolar Mismatch Filtering 

At this final filtering stage, the problem of the remaining 

epipolar mismatches is addressed. These mismatches need to be 
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eliminated because, firstly, they will result in erroneous 3D 

points and in the absence of additional imaging rays they will 

not be detectable as blunders in later network orientations. 

Secondly, the complexity of subsequent procedures is reduced 

when erroneous matches are eliminated (Stamatopoulos et al., 

2012). Within the developed filtering/refinement procedure, the 

feature points of an image are clustered using a theoretical grid. 

For each cell of the grid, a projective transformation is 

performed between the 2D points and their corresponding 

matches in the second image. In this least-squares projective 

transformation, point matches with high residuals are flagged 

for later inspection because they may in fact still be valid 

correspondences. The same procedure is then repeated, the 

difference being that the second image is now considered as the 

‘base’ and consequently the projective transformation from cells 

of the second to the first image are calculated. The flagged point 

matches from the two transformations are then examined and 

those common to both are deemed mismatches and are rejected. 

The reason for this two-way procedure is to avoid rejection of 

correct matches for complex 3D structures. Additionally, in 

order to ensure the integrity of the local transformations 

performed, criteria such as minimum number of points per 

cluster (grid cell) are enforced. A smart cluster merging 

algorithm is applied to avoid the elimination of cells containing 

only a small number of points. 

 

2.5 Network Orientation 

With the procedure described above, correct 2D point 

correspondences among pairs of images can be found. The 

orientation of an arbitrary number of images is thus reduced to 

the same process as orienting image networks that employ 

targets. Since all correspondences are known prior to the 

network orientation phase, it is possible to find an optimal 

starting point for the RO utilising additional information from 

the matching process. For example, the RO can start with the 

two images containing the largest number of multi-ray points. 

This will allow the maximum possible number of images to be 

resected before the need for associated spatial intersection.  

 

In the proposed methodology, additional metrics are kept for 

each of the processed pairs of images. These include 

information such as number of matches, area coverage of the 

matched keypoints and convergence angle between the two 

images. By combining this additional information it is possible 

to ensure that the automated orientation will be performed with 

optimal robustness. Selection of an appropriate starting pair of 

images is important because the remaining images are 

sequentially added via a series of resections and spatial 

intersections. A bad starting point can preclude a complete 

network orientation, which will necesitate an alternative starting 

image pair for the RO. Additionally, in order to ensure 

convergence when new images are added to the network, a 

bundle adjustment with less stringent criteria for convergence 

and outlier detection is run. The noise-free network of 23 

images and 80,000 points shown in Figure 2 highlights the 

capabilities of the proposed target-free automated orientation 

procedure.  

 

 

3. EXPERIMENTAL EVALUATION 

A number of experimental tests have been conducted to 

evaluate the proposed automated target-free network orientation 

methodology. New software was developed in C++ and 

integrated into the iWitnessPRO software package 

(Photometrix, 2014) to allow for operational testing. For this 

paper, two multi-image photogrammetric networks, the first 

being a close-range image configuration and the second an 

aerial dataset captured via a UAV are showcased. Additionally, 

two self-calibrations were carried out as part of the 

experimental testing in order to demonstrate the prospect of 

fully automated camera calibration without the need for 

artificial targets. 

 

 

Figure 2. Configuration for the 80000-point, 23-image 

Salzspeicher network. 

 

3.1 Automated Network Orientation 

3.1.1 Close-Range Dataset 

For the close-range photogrammetric network, the camera was a 

12 mpixel point-and-shoot Nikon CoolPix P300. Figure 3 shows 

the network configuration employed to reconstruct a heritage 

building in Luebeck, Germany, namely the 15th Century 

Holstentor. The network is comprised of 46 images, taken from 

object distances ranging from about 15m to 60m, with various 

orthogonal camera roll angles so as to allow for camera self-

calibration. The final photogrammetric network consisted of 

225,000 3D points with a mean relative accuracy in object space 

of 1:8,500, the RMS image coordinate misclosure value being 

0.35 pixels. It is noteworthy that 3D points with a maximum of 

18 rays were present in the network, the maximum intersection 

angle being     . 

 

 

Figure 3. Configuration for 225,000-point Holstentor network. 

 

3.1.2 Aerial UAV Network 

In the case of the UAV network, a Canon IXUS 100 IS 

consumer camera with an integrated zoom lens was used, with 

the focal length being set to 5.9mm. This camera was deployed 

within a UAV flying at a mean flying height of 200m in a 23-

image block configuration of near-nadir imagery. The images 

used for the calibration testing of the Canon IXUS formed a 

sub-block of a larger network established to investigate the 
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accuracy potential of DEM determination from UAV imagery 

(Cramer, 2013). This data set was kindly provided to the authors 

by the Institute for Photogrammetry, University of Stuttgart. 

 

The scene was a vineyard area of approximately 320 x 250 m 

with a height range of 60m and it was imaged in a configuration 

of three strips of nominally 90% forward and 70% side overlap, 

with an additional cross strip, captured at an image scale of 

close to 1:33,000 (GSD of 5cm). The configuration of the 23-

image block is shown in Figure 4. The scene was feature-rich, 

with some 23,000 feature points being matched, the number of 

imaging rays per matched point varying from a maximum of 19 

down to an assigned minimum of four. This yielded an image 

coordinate misclosure value of 0.43 pixels RMS and a relative 

accuracy in object space of 1:7,500 or 4.5 cm. In order to scale 

and transform the photogrammetric network to a global 

coordinate system 6 control points were used, the RMS of the 

shape-invariant transformation being 2.5 cm 

 

 

Figure 4. Configuration of the 23,000-point Hessigheim UAV 

network. 

 

3.2 Camera Calibration 

Two target-free camera self-calibrations were conducted to 

validate the proposed processing pipeline. The camera used for 

both tests was an off-the-shelf 10.2 mpixel Nikon D200 DSLR 

with a 17mm unifocal lens. The only concession made is regard 

to rendering this camera metric was to tape the lens barrel so as 

to ensure a fixed focus (of nominally 5m). The camera was to 

be hand-held.  

 

The aim was to establish two self-calibration networks, with 

there being a requirement that these would be suitable for 

automated exterior orientation via both coded targets and 

‘natural’ feature points extracted via feature point detectors. It 

was anticipated that image measurement and correspondence 

determination to 0.1 pixel accuracy would be achieved in the 

targeted networks, where the image point correspondence 

determination was via the codes. On the other hand, an accuracy 

of close to 0.25 – 0.4 pixels was to be expected for the feature-

based matching of ‘natural’ feature points.  

 

The plan was to utilize the same imagery for the targeted and 

untargeted cases in the calibrations of the Nikon D200 camera, 

with the network geometry needing to support a camera 

parameter recovery of maximum fidelity. To maximise the 

prospect of recovering a scene independent calibration, while 

minimising projective coupling between interior and exterior 

orientation parameters, the following geometric characteristics 

were adopted: 

 A highly convergent imaging configuration comprising 

20 or more camera stations, albeit with limited camera 

station separation in the vertical direction (only a short 

ladder was available). 

 A wide diversity of orthogonal camera roll angles.  

 An object that was three dimensional, such that the 

target and feature point fields were non-coplanar. 

 An object with rich texture suited to feature point 

detection algorithms. The artificial coded targets 

comprised simply printed 11mm-diameter white dots on 

a black background. 

 

The two networks for the Nikon DSLR calibration are shown in 

Figures 5a and 6a. Both comprised sections of wall from two 

buildings, one of light sandstone, Figure 5a. The texture here 

was not ‘rich’, but moderate, however the texture on the brick 

paving in front of the wall proved to be very rich and very 

favourable for feature point matching. There was also some 

vegetation, namely ivy, across the base of the 6m section of 

wall. The second building, Figure 6a, was red brick, and this 

exhibited moderate texture. Again, the brick paving in front of 

the 5m section of wall provided more feature points than 

originally anticipated, which enhanced the 3D nature of the 

object point array in the target-free calibrations. 

 

The photogrammetric networks for the Nikon D200 calibration 

are shown in Figure 5b, for the sandstone building, and 6b, for 

the red brick building. In the former, 25 codes (200 points) and 

55,500 feature points were recorded within the 27 images. In the 

latter, 31 images covered 24 codes (192 points) and 26,500 

feature points. In both cases the set-back distance from the 

target array was approximately 5.5m, leading to an average 

image scale of 1: 300. 

 

3.2.1 Results 

Table 1 provides a summary of the results of the self-calibrating 

bundle adjustments for the two Nikon D200 networks. In the 

table, the coded target networks are referred to as T and the 

untargeted as U. Listed are the adjusted values of the interior 

orientation parameters, focal length c, and principal point 

offsets   ,   , along with their estimated standard errors. Also 

listed are radial distortion correction values at three selected 

radial distances, and two decentring distortion profile values 

listed for two radial distances. The reason for reporting lens 

distortion in this manner is that it provides a more easily 

interpretable indicator of the repeatability of the computed 

distortion profiles than would be the case if polynomial 

coefficients only were listed. The RMS value of image 

coordinate residuals and the number of object points in each 

network adjustment are also shown in the table. 

 

Two aspects of the results listed in Table 1 are worthy of note 

prior to any discussion of the quality of the camera self-

calibrations. The first is that in view of the fact that the Nikon 

D200 could not be considered a truly metric camera, given that 

no effort had been made to stabilise the lens assembly, 

expectations of high repeatability in interior orientation 

parameters between the two networks should be modest. 

However, expectations of repeatability between the targeted and 

untargeted cases, which used the same images, should be high. 

The second point to recall here is that the ‘true’ calibration 
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values are not known, and the quality and fidelity of the self-

calibrations can only be assessed via internal means. Here, two 

measures are relied upon, namely the precision and repeatability 

of recovery of the calibration parameters, and the resulting 

discrepancies in object space coordinates when these parameters 

are subsequently applied. In the following paragraphs the 

former measure is discussed, whereas the latter measure will be 

addressed in the following section. 

 

 
(a) 

 
(b) 

 

Figure 5. Configuration for 55,500-point ‘Sandstone’ self-

calibration network. 

 

As anticipated, there is a 2 – 3 times discrepancy between the 

accuracy of image coordinate measurement in the targeted and 

untargeted cases, with the RMS     values being close to 0.1 

pixel for the targeted cases and 0.25 pixels for the feature-based 

matching cases. It is interesting to note that there were no 

common points between the two cases. Although the same 

images were used, none of the coded target ‘dots’ were 

extracted by the feature point detectors. On the basis of the 

difference in triangulation closure alone, it could be anticipated 

that the precision of recovery of calibration parameters would 

be better for the targeted case. However, the precision of 

recovery of calibration parameters was in fact superior for the 

untargeted network adjustments, simply because there were so 

many more matched feature points than coded targets, there 

being more than 250 untargeted points for every artificial target 

for the Sandstone network and more than 130 for the Brick Wall 

network.  

 

From a practical point of view, this is a noteworthy finding 

because it illustrates that the feature-based matching approach 

coupled with very dense point fields of thousands of points can 

yield camera calibration parameters to higher precision than 

from targeted arrays comprising a few hundred points. The 

same phenomenon was experienced with the development of 

image matching-based relative orientation on photogrammetric 

workstations back in the 1990s (eg Heipke, 1996). 

 

 
(a) 

 
(b) 

 

Figure 6. Configuration for 26,500-point ‘Brick Wall’ self-

calibration network. 

 

The repeatability between the targeted and untargeted cases was 

very high for both the lens distortion parameters and the interior 

orientation elements in the Sandstone network, being within 1.5 

m (0.25 pixel) for all values except the principal distance, 

where the discrepancy was 5μm. The repeatability of interior 

orientation parameters was also high for the Brick Wall case, 

with the largest discrepancies between the two networks being 

2μm for the principal distance and 5μm for the    offset 

parameter. 

 

A contributing factor to the camera parameter discrepancies 

found in the test networks is the fact that the image points for 

the untargeted case covered a significantly greater area of the 

image format than for the targeted case.  The radially dependent 

lens distortion functions were thus modelled with greater 

fidelity and the scale variation within images in the untargeted 

network was greater, which is a desirable attribute for self-

calibration networks employing highly convergent imaging 

configurations. 

 

On the subject of convergent imaging, there was one 

noteworthy surprise. Whereas it could be anticipated that 

accurate centroiding on high-contrast circular targets would be 

possible to incidence angles of 30 degrees to the target plane 
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and potentially lower, there was not the same level of 

confidence that descriptor-based matching of feature points 

would accommodate moderately high convergence angles. This 

would suggest that the imaging geometry of the targeted array 

might be stronger, due to points having a higher number of 

imaging rays over a wider diversity of viewing angles. 

However, as mentioned in section 3.1.1, the proposed 

methodology is able to accommodate relatively wide baseline 

configurations, resulting in many points having effective 

convergence angles between imaging rays of up to 90 degrees.  

The success with the multi-ray matching of features also 

resulted in object points which were better distributed in three 

dimensions than the targeted points. 

 

Table 1. Results of self-calibrations of the Nikon D200 camera 

for targeted and untargeted cases. 

 
Sandstone Brick Wall 

T U T U 

Focal Length, 

c /    

(mm) 

17.632 / 

0.0010 

17.627 / 

0.0008 

17.633 / 

0.0007 

17.635 / 

0.0004 

   /     

(mm) 

-0.038 / 

0.0007 

-0.036 / 

0.0005 

-0.054 / 

0.0005 

-0.054 / 

0.0003 

   /     

(mm) 

-0.193 / 

0.0007 

-0.193 / 

0.0005 

-0.196 / 

0.0006 

-0.191 / 

0.0003 

Δr @ r=8mm 

(μm) 
121.8 120.9 121.6 121.4 

Δr @ r=10mm 

(μm) 
217.2 216.2 217.0 216.9 

Δr @ r=12mm 

(μm) 
332.3 333.1 332.7 333.9 

P(r) @ r=10mm 

(μm) 
5.7 5.3 5.9 5.7 

P(r) @ r=12mm 

(μm) 
8.1 7.6 8.5 8.1 

RMS     / 

No. of points 

0.09 pl / 

200 

0.25 pl / 

55,500 

0.10 pl / 

192 

0.25 pl / 

26,500 

 

3.2.2 Quality Evaluation in the Object Space 

In order to assess the impact on object space point 

determination of the variation in the calibration parameters 

computed in the untargeted and targeted cases for the Nikon 

D200, a simple test was carried out. From the two sets of 30-

odd images, two subsets were selected, 10 from the Sandstone 

and eight from the Brick Wall data set. Standard bundle 

adjustments employing the camera parameters from the self-

calibrations were then carried out for each of these networks, 

the aim being to determine the accuracy of object point 

determination - for the coded targets only - as quantified by the 

XYZ coordinate discrepancies.  

 

Listed in Table 2 are the RMS values of XYZ object point 

coordinate standard errors obtained in the network adjustments. 

These show anticipated accuracies (RMS 1-sigma) of 0.13 to 

0.17 mm in the depth direction (Z), and between 0.05 and 0.09 

mm in the dominant plane of each target array (XY). There is 

little distinction in quality as judged by the RMS discrepancy 

values,     . In both networks, the accuracy is marginally better 

for the calibration obtained using the coded targets (Cal. 1 in 

Table 2) than via feature-based matching (Cal. 2 in Table 2). On 

the basis of      values there is minimal distinction between the 

four network adjustments, and thus by implication, no practical 

difference between the individual calibrations. 

 

A further means to assess calibration quality is via an 

examination of the difference in the computed shape of the 

object point fields determined from the different sets of 

calibration parameters, for both the Sandstone and Brick Wall 

test fields. The computed RMS coordinate discrepancy values 

     are listed in Table 3, where it can be seen that the overall 

agreement in coordinate determination is at the level of 

0.065mm or 1:80,000 of the size of the object field for the 

Sandstone network, and 0.027mm or 1:150,000 for the Brick 

Wall network. This impressive level of agreement is reasonably 

consistent with standard error estimates listed in Table 2. The 

shape and orientation of both networks can be considered 

identical for all practical applications, considering that the RMS 

discrepancy is only 65μm for the Sandstone and 27μm for the 

Brick Wall. 

 

Table 2. Object point precision () and RMS coordinate 

discrepancies (    ) for adjustments run with different 

calibration parameter sets. 

 Sandstone Brick Wall 

Object Point 

Standard 

Errors (mm) 

Cal. 1 

(targets) 

Cal. 2 

(FBM) 

Cal. 1 

(targets) 

Cal. 2 

(FBM) 

   0.067 0.073 0.057 0.060 

   0.083 0.091 0.058 0.063 

    
(depth) 

0.155 0.166 0.126 0.138 

     

(pixels / μm) 

0.08 / 

0.51 

0.09 / 

0.55 

0.08 / 

0.50 

0.09 / 

0.53 

 

Nevertheless, it is interesting to note that the differences in 

object point XYZ coordinates obtained with the different 

camera calibration parameter sets show clearly systematic 

trends. This is illustrated in Figure 7, where the coordinate 

differences for the coded target clusters of 8 individual code 

‘nuggets’ show consistent magnitude and orientation. 

 

Table 3. RMS coordinate discrepancy values: Calibration 1 

versus Calibration 2 (mm) 

               

Sandstone 0.075 0.039 0.076 
0.065 mm or 

1:80,000 

Brick 0.032 0.025 0.022 
0.027 mm or  

1:150,000 

 

 

 
(a) Sandstone (b) Brick Wall 

  

Figure 7. Object point discrepancies from network solutions using 

different calibration parameter sets. 

 

 

4. CONCLUSION 

It has been demonstrated that the proposed target-free automatic 

network orientation approach can yield a comprehensive and 

effective elimination of outliers in the initial point 
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correspondence determination stage, which leads to largely 

noise-free networks. Moreover, the experimental test results 

show that the approach can accommodate the convergent 

imaging configurations that characterise moderate-to-high 

accuracy close-range photogrammetric measurement, and which 

are necessary for reliable network orientation and self-

calibration. Through the target-free camera calibration tests 

conducted for the Nikon D200 cameras it has been 

demonstrated that camera calibration parameters of greater 

precision and of equal accuracy can be achieved, as far as could 

be assessed, compared to today’s ‘standard’ automatic self-

calibration approach which involves the use of targets. The 

poorer image point measurement accuracy of descriptor-based 

feature point matching is more than offset by the provision of 

potentially 100-fold more object points within the 

photogrammetric network. Within the close-range measurement 

context, both approaches fit well into automatic data processing 

pipelines, as exemplified by the iWitnessPRO software system, 

which accommodates both the targeted and targetless cases. 

Also, from a practical standpoint, if the scene or object being 

imaged is texture rich and conducive to the target-free approach, 

then this is arguably the more flexible automated camera 

calibration option, yet there is limited time distinction between 

the two processes since the time to position 50 or so coded 

targets to form an object point array, can be similar to the extra 

computation time associated with the target-free calibration. 
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