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ABSTRACT: 

 

Potential applications of airborne LiDAR for disaster monitoring include flood prediction and assessment, monitoring of the growth 

of volcanoes and assistance in the prediction of eruptions, assessment of crustal elevation changes due to earthquakes, and 

monitoring of structural damage after earthquakes.  Change detection in buildings is an important task in the context of disaster 

monitoring, especially after earthquakes. Traditionally, change detection is usually done by using multi-temporal images through 

spectral analyses. This provides two-dimensional spectral information without including heights. This paper will describe the 

capability of aerial images and LiDAR data fusion for rapid change detection in elevations, and methods of assessment of damage in 

made-made structures. In order to detect and evaluate changes in buildings, LiDAR-derived DEMs and aerial images from two 

epochs were used, showing changes in urban buildings due to construction and demolition. The proposed modelling scheme 

comprises three steps, namely, data pre-processing, change detection, and validation. In the first step for data pre-processing, data 

registration was carried out based on the multi-source data. In the second step, changes were detected by combining change detection 

techniques such as image differencing (ID), principal components analysis (PCA), minimum noise fraction (MNF) and post-

classification comparison (P-C) based on support vector machines (SVM), each of which performs differently, based on simple 

majority vote. In the third step and to meet the objectives, the detected changes were compared against reference data that was 

generated manually. The comparison is based on two criteria: overall accuracy; and commission and omission errors. The results 

showed that the average detection accuracies were: 78.9%, 81.4%, 82.7% and 82.8% for post-classification, image differencing, 

PCA and MNF respectively. On the other hand, the commission and omission errors of the results improved when the techniques 

were combined compared to the best single change detection method. The proposed combination of techniques gives a high accuracy 

of 92.2% for detection of changes in buildings. The results show that using LiDAR data in the detection process improves the 

accuracy of feature detection by 14.9% compared with using aerial photography alone.  
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1. INTRODUCTION 

An up-to-date building database is a crucial requirement for 

reliable disaster damage assessment. Change detection 

employing LiDAR (Light Detection and Ranging) data is a 

useful tool for damage detection, particularly for collapsed 

multi-floored buildings (Tuong et al., 2004). LiDAR systems 

are active acquisition systems equipped with a laser scanner, a 

Global Positioning System (GPS) receiver and an Inertial 

Navigation System (INS).  They emit infrared laser pulses at 

high frequency and record the time of flight of the return pulses. 

By combining the LiDAR distance with GPS and INS data the 

X, Y and Z coordinates of ground points can be determined. 

The intensity of the returns can also be recorded. There are 

basically two types of LiDAR systems: discrete and waveform. 

A short pulse (~ns) is emitted from the laser and in discrete 

systems one or more discrete distances and intensities are 

recorded. Waveform systems record the full waveform of the 

return signal. This paper will limit its discussion to data derived 

from discrete lidar systems. 

Methods of change detection can mainly be divided into two 

categories: 

   

 The determination of the difference of  classifications of a 

surface obtained at two periods;  

 The direct determination of change between two data sets. 

 

Detecting changes by supervised classification is unreliable 

when the appearances of non-buildings and buildings are 

similar. Furthermore, using spectral information to detect 

change does not consider the situation when the differences 

occur in shape instead of colour (Huang and Chen, 2007). A 

number of research results, such as Knudsen and Olsen (2003), 

Matikainen et al. (2004), Walter (2004a,b) and Nielsen and 

Canty (2011) belong to the first category above. The second 

category [Murakami et al., 1999; Jung, 2004] is unable to 

determine the land category because no classification is used. It 

is also observed that trees often cause mistakes in the output of 

research. 

 

Even though aerial photography has been conventionally 

employed for change detection [Niederöst, 2001; Knudsen and 

Olsen, 2003; Walter, 2004a; Walter, 2004b], it is subject to 

several unavoidable problems such as: shadows in the scenes 

acquired over dense urban areas with many skyscrapers; the 

spectral information of certain features in aerial photography is 

diverse and ill-defined (Knudsen and Olsen, 2003); and 

perspective projection causes relief displacement of buildings, 

which requires height information to correct. Therefore, the 

employment of LiDAR data rather than spectral information 

derived from aerial photographs offers important advantages 

(Tuong, et al., 2004). It allows obtaining 3D point clouds of the 

surface with high density as well as high accuracy. Moreover, 
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the method is capable of collecting data over large areas in a 

short time (Baltsavias, 1999). 

 

Instead of the multi-spectral imagery that was often used in the 

past, many change detection methods using LiDAR data have 

been proposed.  Murakami et al., (1999) carried out change 

detection of buildings using LiDAR data in Japan. That study 

was a simple comparison between two datasets. Tuong et al., 

(2004) presented an automatic method for LiDAR-based change 

detection of buildings in dense urban areas. Walter (2004b) 

used LiDAR data in an object-based classification to determine 

the land-use category after the observation of land phenomena. 

Matikainen et al. (2004) divided a LiDAR point cloud into 

homogeneous areas, and then extracted information to discover 

the building areas for change detection. Girardeau-Montau et al. 

(2005) directly used point-to-point position relations for change 

detection. Brzank et al., (2009) presented a new method to 

detect and evaluate morphologic changes of the Wadden Sea 

based on the extraction of structure lines of tidal channels from 

LiDAR data.  

 

It is worth mentioning that, as change detection is an important 

step in data updating, some researchers used spectral-based 

methods such as iterative principal components analysis (IPCA) 

to determine temporal distance in feature space and combine it 

with a Bayesian decision rule to determine the presence of 

change (Spitzer et al., 2001). Clifton (2003) describes training 

neural networks to learn expected changes between images and 

to then identify pixel changes which do not match what is 

“expected”. Hashimoto et al. (2011) proposed a knowledge-

based change detection approach, which can obtain change 

information that includes not only land cover changes, but also 

contextual changes, such as types of damage caused by natural 

hazards. This approach mainly consists of two processes: 

information extraction and change inference using a Bayesian 

network. Information extraction employs object-based image 

analysis for extracting spatial information. Change inference 

uses extracted information and the Bayesian network 

constructed from knowledge of the change detection process. 

To demonstrate this approach, change detection of mudslide 

damage caused by heavy rain in Yamaguchi Pref., Japan was 

conducted. Some other methods used multi-temporal high-

resolution imagery to detect changes in spectral difference or 

used supervised classification to determine building positions 

for comparisons of two epochs for change detection (Knudsen 

and Olsen, 2003; Kumar, 2011). 

 

Research on change detection by aerial images and LiDAR data 

fusion has been undertaken so that the strengths of each data 

type can compensate for the weaknesses of the other. Low 

contrast, occlusions and shadow effects in the images can be 

compensated by the accurately defined planes in the LiDAR 

data (Sohn and Dowman, 2003). On the other hand, the poorly 

defined edges in the LiDAR data can be compensated by the 

accurately defined edges in the aerial images. 

 

Huang and Chen (2007) included LiDAR data and aerial images 

to detect the changes of building models. Chien and Lin (2010) 

developed a new method to find changes within 3D building 

models in the region of interest with the aid of LiDAR data. 

Their modelling scheme comprises three steps, namely, data 

pre-processing, change detection in building areas, and 

validation. Research findings clearly indicate that a double-

threshold strategy improves the overall accuracy from 93.1% to 

95.9%.  

 

To evaluate the contribution of the images and LiDAR data in 

the change detection process in this study, four change 

detection methods were each tested using images and LiDAR 

data separately and in combination, to determine the accuracy of 

change detection against a reference map.  

 

The paper is organised as follows. Section 2 describes the study 

areas and data sources. Section 3 describes the experiments 

while Section 4 presents and evaluates the results. We 

summarise our results in Section 5. 

 
2. STUDY AREAS AND DATA SOURCES 

2.1 Aerial images and LiDAR data 

In order to demonstrate the capability of the proposed change 

detection method, two aerial images and LiDAR datasets were 

available, acquired on different occasions over Coffs Harbour in 

NSW Australia. The characteristics of aerial images and LiDAR 

datasets are summarized in Table 1. Data was provided over a 

dense urban area which includes residential buildings, large 

buildings, a network of main and local roads, open and green 

areas as well as trees as shown in figure 1.  

 
Table 1: Characteristics of aerial images and LiDAR datasets. 

Earlier aerial 

image 

Resolution 50 cm 

Acquisition time 9/2009 

Later aerial image 
Resolution 10 cm 

Acquisition time 12/2009 

LiDAR data 
Density 1.5 pts/m2 

Acquisition time 9/2009 & 12/2009  

 

    
Figure 1. Earlier and later aerial images of the test site. 

2.2 Reference data 

In order to accurately evaluate the performance of the proposed 

change detection method, changes were visually interpreted and 

digitized independently of their size. The reference data is a 

four-class thematic image, typically divided into the four 

categories of: ‘background’; ‘decreased’, ‘increased’; and 

‘unchanged’.  

3. METHODOLOGY 

3.1 Pre-processing 

First, both DEMs were registered to each other based by a 

projective transformation. The registration process resulted in 

small Root Mean Square (RMS) errors that did not exceed 0.15 

m in both X and Y directions. Then, both aerial images were 

registered to the LiDAR DSM based on a projective 

transformation. The registration process resulted in small Root 

Mean Square Errors (RMSE) that did not exceed 1.2 m in both 

X and Y directions. Following the transformation, the images 

were resampled to 1 m pixel size.  A grid format is preferred to 
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the raw point cloud format to speed up the processing, 

particularly when there is a direct comparison of the two 

datasets. In order to obtain high image quality and to reduce the 

processing time, a bilinear interpolation was applied for the 

resampling process. The bilinear interpolation can result in a 

better quality image than nearest neighbourhood resampling and 

requires less processing than cubic convolution.  

 

3.2 Main-processing 

Four different change analyses were performed to evaluate the 

efficacy of aerial images and LiDAR data for detecting changes 

occurring in two epochs. The four methods include: image 

differencing; principal components analysis (PCA); minimum 

noise fraction (MNF); and Post-Classification based on support 

vector machine (SVM). After these steps, a simple majority vote 

has been applied to generate the change detection image. All the 

methods proposed in this research were implemented through 

programs generated by the authors in a Matlab environment. An 

interface was developed to enable the user to: detect changes 

through the aforementioned four methods; combine votes 

derived from all methods; generate a change detection image; 

and evaluate the change detection results. The workflow for this 

investigation is shown in figure 2. 

 
 

 

Figure 2. The workflow for change detection analysis. 

 
In the first change detection technique, differences that exceed a 

user-specified threshold of 10 pixels in area and 0.30 m in 

height, double the LiDAR system accuracy, were computed and 

highlighted. In the image differencing method, the second 

image is subtracted from the first image to provide the 

difference and highlight changes. The second image is more 

recent and the differences reflect changes over time. After 

application of image differencing, increases in height values 

that are more than the predefined thresholds, are highlighted as 

increases, while decreases in height values that are more than 

the predefined thresholds, are highlighted as decreases. The 

result is a grey scale image composed of a single band of 

continuous data that reflects the changes. The change image is a 

four-class thematic image, typically divided into the four 

categories of: background; decreased, increased; and 

unchanged. Although the calculation is simple, the 

interpretation requires knowledge about the area, because every 

difference relates to a certain location but not necessarily to the 

same object. 

 

In the second change detection technique, principal components 

analysis (PCA) has been applied to detect changes. Principal 

components analysis (PCA) is commonly applied for orthogonal 

data transformations by maximizing the spectral variability, by 

decreasing the redundancy of information contained in multiple 

spectral bands (Armenakis et al., 2003). PCA components are 

based on statistical relationships that are difficult to interpret, 

and are variable between different landscapes and different 

dates for a single landscape (Collins and Woodcock 1994). 

PCA is a linear transformation of the data along perpendicular 

axes of maximum variance between data sets (Legendre and 

Legendre 1998). The first eigenvector sorts pixels along an axis 

of highest correlation between data sets. Pixels on this axis have 

not significantly changed between the two images. The second 

eigenvector is perpendicular to the first, and therefore sorts 

pixels that represent differences between data sets. 

 

The third change detection technique was based on the 

minimum noise fraction Transform (MNF) as modified from 

Green et al. (1988). MNF is a linear transformation that consists 

of the following separate principal components analysis 

rotations: (i) The first rotation uses the principal components of 

the noise covariance matrix to decorrelate and rescale the noise 

in the data (a process known as noise whitening), resulting in 

transformed data in which the noise has unit variance and no 

band-to-band correlations; (ii) The second rotation uses the 

principal components derived from the original image data after 

they have been noise-whitened by the first rotation and rescaled 

by the noise standard deviation. The inherent dimensionality of 

the data is determined by examining the final eigenvalues and 

the associated images. For the best results, and to save disk 

space, only those bands with high eigenvalues have been 

output. Images with eigenvalues close to 1 are mostly noise.  

 

In the fourth change detection technique, post-classification 

comparison was performed in order to detect changes. The data 

were classified using a support vector machine classifier 

(SVM), then the classification results were compared and the 

differences were extracted. The objective is to classify the input 

data into four primary classes of interest, namely buildings, 

trees, roads, and ground. SVMs are based on the principles of 

statistical learning theory (Vapnik, 1979) and delineate two 

classes by fitting an optimal separating hyperplane (OSH) to 

those training samples that describe the edges of the class 

distribution. As a consequence they generalize well and often 

outperform other algorithms in terms of classification 

accuracies. Furthermore, the misclassification errors are 

minimized by maximizing the margin between the data points 

and the decision boundary. Since the One-Against-One (1A1) 

technique usually results in a larger number of binary SVMs 

and then in subsequently intensive computations, the One-

Against-All (1AA) technique was used to solve for the binary 

classification problem that exists with the SVMs and to handle 

the multi-class problems. The Gaussian radial basis function 

(RBF) kernel has been used, since it has proved to be effective 

with reasonable processing times in remote sensing 

applications. 

 

Then a simple majority vote, which can be more effective than 

more complex voting strategies (Waske, 2007), was used to 

generate the final result. If change detection algorithm ci assigns 

a given pixel to class label ωj, then we say that a vote is given to 

ωi. After counting the votes given to each class label by all 
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detection algorithms, the class label that receives the highest 

number of votes is taken as the final output. It is worth 

mentioning that all votes are of equal weight and independent of 

height differences. When the four detection methods give 

completely different decision for a given pixel, which does not 

convey any information, the decision from the method with 

highest overall detection accuracy is considered.  

 

As a last step, the smaller detected regions were merged into 

larger neighbouring homogeneous ones or deleted according to 

an arbitrary 1 m distance and 30 m2 area thresholds 

respectively. The area threshold represents the expected 

minimum change area, while the distance threshold was set to 1 

m to fill in any gaps within the detected region.  Regions were 

retained if they were larger than the given area threshold and/or 

were adjacent to a larger homogeneous region by a distance less 

than 1 m.  

 

Finally, region borders were cleaned by removing structures 

that were smaller than 5 pixels and that were connected to the 

region border. There was a compromise between cleaning 

thresholds less than 5 pixels, which may leave the original 

buildings uncleaned, and thresholds greater than 5 pixels which 

may remove parts of the detected region. The result was an 

image that represents the detected changes without noisy 

features and also without holes. Because ground and vegetation 

usually result in wrong detection, we removed ground and 

vegetation areas in LiDAR data and aerial images.  

 
3.3 Evaluation of the change detection results 

In order to evaluate the performance of the adopted method for 

change detection from aerial images and LiDAR data, the 

results have been checked based on two different methods:  

 

(i) The overall detection accuracy which was assessed using the 

reference data based on equation 1: 

 

 
                                 (1)                                                            

 

Where ODA is the overall detection accuracy; NCP is the total 

number of correctly detected pixels and NRP is the total number 

of reference pixels.  

 

(ii) The omission and commission errors: since the overall 

detection accuracy is a global measure the performance of the 

proposed combination method was also evaluated by 

determining the commission and omission errors (Congalton, 

1991). Unlike overall detection accuracy, commission and 

omission errors clearly show how the performance of the 

proposed methods improve the results or causes a deterioration 

of results for each individual class compared to the reference 

data.  

 

                           1
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CEI and OEI are commission and omission errors of class 

increased; A1, A2 and A3 are the numbers of incorrectly 

identified pixels of class increased associated with classes 

decreased, background and unchanged; R1 is the total number 

of pixels of the class increased as observed in the reference 

data; B1, B2 and B3 are the numbers of unrecognized pixels that 

should have identified as belonging to the class increased. The 

same is applicable for the class decreased. 

 

 
 

Figure 3. A typical example showing the results in a sub-area of 

the whole test area. 

 

NRP

NCP
ODA
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4. RESULTS AND ANALYSIS 

Figure 3 is a typical example showing the results in a sub-area 

of the whole test area. For the detected changes, the white 

colour indicates a change while black colour refers to both 

background and unchanged. It can clearly be seen that the 

detected changes for PCA are eroded as compared to the 

reference data. This trend can also be observed for post-

classification results. On the other hand, the detected changes 

for image differencing are larger. However, the erosion effect is 

less when the MNF and the simple majority vote combination 

are applied. 

 

The overall accuracies of individual change detection 

techniques, based on the reference data, are given in Table 2. 

MNF performed the best with 82.8% detection accuracy, 

followed by PCA, image differencing and post-classification 

with detection accuracies of 82.7%, 81.4% and 78.9% 

respectively. It is clear that the combination of the 4 change 

detection methods based on simple majority vote resulted in 

higher accuracy of change detection than when each detection 

method was used individually. An improvement in detection 

accuracy of 9.4% was obtained from the simple majority voting 

combination algorithm compared with the best individual 

detection method, MNF. 

 

Table 3 shows the commission and omission errors based on the 

proposed method in cases of: aerial images; LiDAR data; and 

aerial images plus LiDAR data. It can be seen that a 

considerable amount of the misclassified pixels have been 

recovered by the combined processing of aerial images and 

LiDAR data. As well, omission and commission errors are 

comparable for aerial images, LiDAR data and when fused, as 

shown in table 3. The table also indicates the capabilities of the 

method of combining the three methods to detect changes from 

aerial images and LiDAR data.  

 
 

Table 2: Overall detection accuracy for single detection 

techniques compared with results when they are used in 

combination (SMV). 

 

Metho

d 

Detection accuracy 

Aerial Images LiDAR Data 
Aerial Images &    

LiDAR Data 

ID 62.90 72.36 81.40 

PCA 64.16 73.85 82.73 

MNF 64.58 73.75 82.82 

P-C 66.50 69.42 78.87 

SMV 77.35 81.61 92.23 

 

 

Table 3: Change detection errors of the algorithm for combining 

the three change detection methods for aerial images, 

LiDAR data and when these data are fused. Com. and 

Om. Stand for commission and omission errors 

respectively. 

Aerial Images  LiDAR Data 
Aerial Images &  

LiDAR Data 

Om. 

(%) 

Com. 

(%) 

Om. 

(%) 

Com. 

(%) 

Om.  

(%) 

Com.  

(%) 

20.3 10.8 11.4 13.1 9. 0 8.9 

 

5. CONCLUSION 

In this paper, we have applied a powerful method to combine 

change detection techniques with different performances based 

on simple majority vote. To test the algorithm, four change 

detection methods were based on aerial images and LiDAR data 

of different two epochs. The results showed an improvement in 

terms of detection accuracy as well as omission and commission 

errors. Detection accuracies of individual algorithms were 

78.9%, 81.4%, 82.7% and 82.8% for post-classification, image 

differencing, PCA and MNF respectively, whereas the proposed 

combination algorithm gave an accuracy of 92.2% which is an 

improvement of around 9.4%. On the other hand, the proposed 

method showed a high level of automation in the change 

detection process. These results demonstrate the overall 

advantages of the proposed algorithm for change detection that 

could be applicable for detecting changes in buildings damaged 

in a disaster such as an earthquake. If two LiDAR flights could 

be carried out before and after an earthquake, the change 

detection results can reveal the collapsed buildings. It would be 

a positive approach to use discrete LiDAR point clouds instead 

of DSM images to alleviate interpolation errors.  
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