
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 362: 37–43, 2008
doi: 10.3354/meps07444

Published June 30

INTRODUCTION

There is growing evidence of the ecological impor-
tance of underwater sound in structuring marine com-
munities through its use in communication and by pro-
viding vital orientation and warning cues for animals
(McCauley & Cato 2000, Stocker 2002, Simpson et al.
2005, Montgomery et al. 2006). For example, recent
research has demonstrated that underwater sound
emanating from reefs provides a key orientation cue
for the recruiting stages of many types of reef fishes
and crabs swimming toward settlement habitats (Sto-
butzki & Bellwood 1998, Tolimieri et al. 2000, 2002,
2004, Leis et al. 2002, Jeffs et al. 2003, 2005, Simpson et
al. 2004, 2005, 2008, Leis & Lockett 2005, Radford et
al. 2007). While many of the biological sources of
underwater sound and choruses have been identified
(Fish 1964, Tait 1964, D’Spain & Batchelor 2006), there

remain many choruses for which the sound sources are
unknown. It is very difficult to use field recordings of
animals in open waters to confirm the target animals as
the source of any ambient noise. The tremendous
acoustic conductivity of seawater means that sound
recorded in the field could have come from any noise-
producing animal or abiotic source, both near or far.
There are several ways in which source organisms can
be reliably determined. Noise-generating organisms
can be recorded and their sounds characterized in
isolation from all other potential acoustic sources.
Alternatively, they can be studied in situ with video
recorders in association with recording devices to
determine behavioral events associated with noise
production (Tricas et al. 2006), or the animals can be
observed directly while recording their sounds by
divers using closed-circuit rebreathers to limit extrane-
ous noise (Lobel 2001, 2005, Radford et al. 2005).
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Many of the organisms responsible for the dramatic
increase in ambient underwater sound immediately
after dusk and before dawn, which is a feature of
coastal reef ecosystems in many parts of the world
(Fish 1964), remain unidentified. For example, the
source of underwater dusk choruses, which increase
ambient sound levels by as much as 20 to 30 dB re
1 µPa in temperate waters such as in Australia and
New Zealand, has never been reliably confirmed, al-
though responsibility has been assigned to a range of
potential candidate species, including fishes and
urchins (Cummings et al. 1964, Fish 1964, Cato 1978).
The feeding activities of sea urchins have been sug-
gested as a possible source of the major component of
the chorus due to their ubiquitous presence in most
temperate reef systems (Tait 1964, Cato 1978). In addi-
tion, the possibility of the feeding noises being ampli-
fied by the ovoid calcareous skeleton (or ‘test’) of
urchins acting as a resonance chamber was invoked in
an attempt to reconcile the large overall intensity level
of the dusk chorus versus the relatively small size of
the urchins (Castle 1974, Castle & Kibblewhite 1975,
Cato 1977). Although an urchin test would appear to
have suitable attributes to operate as a Helmholtz res-
onator, i.e. an enclosed volume of fluid with an exter-
nal aperture allowing oscillations of fluid through the
aperture to entrain the enclosed fluid to oscillate in
sympathy (Cato 1977), there is no experimental evi-
dence to support this proposition.

We therefore set out to determine the biological
source of this important phenomenon by recording the
ambient underwater sound near a temperate reef and
then analyzing the frequency components that
characterized the choruses. The spectral composition
of ambient sound was then compared to feeding noises
recorded from sea urchins over a range of sizes
isolated in tanks. The frequency components of sound
generated by individual urchins over a range of
test sizes were compared to theoretical predictions for
Helmholtz resonators to establish if the frequencies
of the acoustic output from the urchin skeletons
were consistent with ideal resonant Helmholtz
chambers.

MATERIALS AND METHODS

The study was undertaken at the Leigh Marine Lab-
oratory, located in northern New Zealand (36° 15’ S,
174° 47’ E) next to a marine reserve encompassing
6.5 km of rocky reef coastline typical of a temperate
marine environment. Sixty urchins of a range of sizes
(31 to 90 mm test diameter) were collected using
SCUBA from a nearby reef (North Reef, Leigh,
36° 15’ 45” S, 174° 47’ 33” E) and transferred to the lab-

oratory where they were held in flow-through aquaria
(1500 L; 1.8 m diameter, 0.65 m deep) containing ambi-
ent seawater (temperature 15°C; salinity 33‰). The
experiment ran from 10 July to 12 August 2006. To
stimulate urchin feeding, an artificial diet (Hay et al.
1998) was painted onto weathered cobble stones (210 ×
210 mm) and set in a refrigerator. The external dia-
meters of urchin tests were measured with pointed
Vernier calipers squeezed tightly between the spines
down to the exterior of the test. Measured urchins
were then sorted into 10 mm size classes (31–40 mm,
41–50 mm, 51–60 mm, 61–70 mm, 71–80 mm, and
81–90 mm) and held in separate aquaria without food
for 2 nights before being used for experimental record-
ings. The night before being recorded, the urchins
were removed from the aquaria and placed into sepa-
rate aquaria (5 urchins per night) and allowed to
recover from the disturbance. The urchins were then
placed onto the cobble stones 30 min before dusk,
when the first recording started. Five 2 min recordings
were made of each urchin grazing. It was possible to
record up to 5 urchins each night, and in total, 30
urchins were recorded (5 urchins in each of the 6 size
classes). Control recordings were taken in empty
aquaria before urchins were placed into them, and
there was no extraneous noise that could have influ-
enced the results.

Urchin grazing noises were recorded with a cali-
brated SQ03 wideband omnidirectional hydrophone
(Sensor Technology), with a flat frequency-response
curve from 10 to 60 kHz. This enabled the hydrophone
to be calibrated by recording a single frequency
acoustic pinger (NetMarkTM 1000, source level 130 dB
re 1 µPa at 1 m, 10 kHz signal, 300 ms pulse length, 4 s
repetition rate). The hydrophone was suspended in the
tanks and maintained at a distance of 10 cm away from
the feeding urchin and 1 cm above the cobble stone.
The hydrophone signal was recorded on a Sony TCD-
D8 digital recorder with a sampling rate of 48 kHz. The
digital recordings were transferred to a PC and ana-
lyzed using Matlab software with codes specifically
written for these recordings. Resonant frequencies
were obtained by analyzing 1 randomly selected graz-
ing event out of each of the 2 min recordings from each
urchin.

Urchins have a hard test in the shape of a flattened
sphere with a circular opening on the ventral surface
for the mouthparts. It is likely that this test behaves
acoustically as a neckless Helmholtz resonator with a
resonant frequency given by f = [c/(2π)] × √(2R /V),
where c is the speed of sound in water, R is the radius of
the neck and V is the volume of the resonator (Stephen
& Bate 1966). Assuming that urchins maintain the
same proportions as they grow, the neck radius (R) will
be proportional to the diameter (D) of the urchin, and
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the volume (V) will be proportional to D3, giving a res-
onant frequency proportional to 1/D. The hypothesis
that the urchins behave as Helmholtz resonators was
tested by regression analysis of the resonant frequency
as a function of the reciprocal (1/D) of the urchin dia-
meter. An adequacy of fit test was conducted on the
regression due to the repeated-measure nature of the
data. To test whether the theoretical model fitted the
experimental data, a Student’s t-test was conducted to
compare the slopes of the regression lines (Zar 1999).

To assess temporal variation in ambient noise at the
North Reef study site, ambient noise was recorded
over the new moon (which was considered to be 3 d
either side of the astronomical event) during the aus-
tral spring (September to November). A hydrophone-
recorder unit was placed 1 m off the seafloor in 21 to
23 m of water depending on the tide, and 80 m away
from the margin of the coastal fringing reef. The
hydrophone-recorder consisted of a calibrated Sona-
tech BM 216 omnidirectional hydrophone (10 Hz to
60 kHz flat response) connected to an automated
recording system contained in an underwater housing.
The system consisted of a Unidata Micrologger timing
and relay unit operating a Sony TCD-D8 digital
recorder with a sampling rate of 48 kHz, which took a
5 min recording hourly, on the hour. The hydrophone
was calibrated by recording a NetMark 1000 acoustic
pinger (specifications: source level 130 dB re 1 µPa at
1 m, 10 kHz signal, 300 ms pulse length, 4 s repetition
rate). The recordings were transferred to a PC and
analyzed using Matlab software with codes specifically
written for these recordings. Spectrum levels were
obtained by taking a Fourier transform of 1 s of data
and smoothing the result with a triangular window.

RESULTS

We observed a 100-fold increase (20 dB re 1 µPa2

Hz–1) in the overall intensity of ambient underwater
sound between recordings taken from North Reef at
midday (12:00 h) compared to early evening (18:00 h).
Over 82% of this dramatic increase in acoustic inten-
sity was in the range of 700 to 2000 Hz (Fig. 1). The
daily pattern of timing of these choruses is entirely
consistent with the crepuscular feeding behavior that
is common among sea urchins, including the urchin
species most common at our study site, Evechinus
chloroticus.

Analyses of underwater sound recordings of the
feeding of isolated individual urchins demonstrated
that the spectral band of the sound output for the 30
urchins recorded over a wide range of sizes was
entirely consistent with the dominant component of the
ambient chorus recorded near a reef, i.e. in the range

of 700 to 2000 Hz. One example is shown of the typical
waveform of a single scrape for an urchin with a test
diameter of 83 mm (Fig. 2A). Six oscillations in 0.007 s
equates to 1 oscillation in 0.00116 s or a frequency of
860 Hz. This corresponds to the spectragrams, with the
resonant frequency close to 900 Hz (Fig. 2B), and is
consistent with the presence of resonance amplifica-
tion of base feeding noises in these specific frequency
ranges. The corresponding sonogram of this scrape
also shows that the majority of the noise was produced
at 900 Hz (Fig. 3). A second example shows that a
42 mm test diameter urchin produced 7 oscillations in
0.004 s (Fig. 4A), which equates to a single oscillation
in 0.00057 s or a frequency of 1754 Hz (Fig. 4B) in a
single feeding scrape. Furthermore, there was a very
close inverse relationship between urchin test dia-
meter and the dominant frequency (Fig. 5). Regression
analysis of 150 feeding events (5 from each of 30 indi-
viduals) showed a positive and significant correlation
(r2 = 0.85, y = 106 297x – 319.71) between the dominant
frequencies produced by feeding urchins and the reci-
procal of the test diameter (1/D) (Fig. 5). The adequacy
of fit test showed that the regression was also a linear
fit to the data (F = 1.2, p > 0.05). The largest urchin
recorded (88 mm test diameter) had a dominant fre-
quency output of 822 ± 70 Hz, and the smallest urchin
recorded (31 mm) had a dominant frequency output
of 2800 ± 140 Hz. These observed frequencies are
entirely consistent with resonant frequencies calcu-
lated for theoretical Helmholtz resonators of the same
dimensions (t0.05(2),31 = 0.9, p > 0.05; Cato 1977; Fig. 5).

DISCUSSION

Our results strongly suggest that the feeding sound
resonating in the calcareous skeletons of sea urchins
accounts for the evening chorus in the frequency range
700 to 2000 Hz in New Zealand waters. It also suggests
that sea urchins could be responsible for evening
choruses with a similar frequency bandwidth that have
been observed in other parts of the world, e.g. the
Bahamas (Fish 1964), San Diego, California, USA
(D’Spain & Batchelor 2006), and Australia (Cato 1978).
The unique frequency signature and the intensity of
the sound produced by urchins during the chorus has
the potential to be an important source of habitat infor-
mation for marine organisms listening to this sound
from more distant locations. However, only 2 studies
have indicated that larval fish can respond to different
frequencies (Simpson et al. 2005, 2008). Using patch
reefs and replaying either high (>570 Hz) or low
(<570 Hz) frequency sound, Simpson et al. (2005)
showed that pomacentrid fish settled in higher num-
bers in response to low frequency sound, apogonid fish
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Fig. 1. Evechinus chloroticus. Spectrum levels taken during the new moon period in the austral spring. Each plot represents 2 
recordings separated by a 2 h period (times are indicated in the legends)
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Fig. 2. Evechinus chloroticus. (A) Wave form of a typical scrape by an urchin with an 83 mm diameter test grazing on the cobble 
stone; (B) corresponding spectrum of the wave form showing the resonant frequency 900 Hz
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Fig. 3. Evechinus chloroticus. Sonogram of a typical scrape by an urchin with an 83 mm diameter test (Fast Fourier Trans-
formation = 512 with a Hann Window)

Fig. 4. Evechinus chloroticus. (A) Wave form of a typical scrape by an urchin with a 42 mm diameter test grazing on the cobble 
stone; (B) corresponding spectrum of the wave form showing the resonant frequency (1754 Hz)
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showed no preference, and acanthurids preferred high
frequency sound. Simpson et al. (2008) also showed a
higher diversity of adult species moving toward reefs
broadcasting low frequency sound compared to reefs
broadcasting high frequency sound. Our study high-
lights the possible importance of the urchin chorus in
New Zealand and possibly other locations in providing
fish and decapod larvae with a distinctive reef cue for
onshore orientation. Furthermore, understanding what
frequencies these animals are listening and respond-
ing to is crucial for determining the ranges at which
they can detect underwater sound, because the atten-
uation of underwater sound is strongly dependent on
frequency.

In many coastal ecosystems around the world,
urchins are keystone species that have experienced
significant harvesting pressure in recent years for their
roe (Andrew et al. 2002). In addition to direct fishing
pressure, coastal urchin populations have been dra-
matically affected by trophic cascades resulting from
harvesting of predators in some locations (Shears &
Babcock 2003, Guidetti 2006). Based on our evidence,
these changes in urchin populations could result in
changes in the sound levels and frequency composi-
tion of ambient underwater sound, which could have a
knock-on effect on larval fish and decapod settlement.
These results in conjunction with the evidence that
larval fishes and decapods orientate with respect to the
‘soundscape’ raises important issues for management,
conservation, and the protection of sound cues in
natural behavior.
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