
MONITORING THE IMPACTS OF EL NIÑO ON THE EXTENT OF CULTIVATED 
FIELDS USING SAR DATA AROUND THE AGRICULTURAL REGION OF THE FREE 

STATE, SOUTH AFRICA 

A. Ngie 1, 2 *, S. Tesfamichael1, F. Ahmed 2 

1 Department of Geography, Environmental management and Energy Studies, University of Johannesburg, PO Box 524 Auckland 
Park Johannesburg, 2006, South Africa - (angie, stesfamichael)@uj.ac.za

2 School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS, 2050, 
South Africa - fethi.ahmed@wits.ac.za 

37th International Symposium of Remote Sensing on Environment, ISRSE37 

KEY WORDS: Backscatter, cultivated fields, El Niño, sensitivity, Sentinel-1 

ABSTRACT: 

There is continuous challenge in crop monitoring from erratic climatic phenomena such as irregular rainfall episodes during 
required farming seasons or cloud cover. Remote sensing has offered vital support in the monitoring of such scenarios and informs 
relevant authorities for better decision making. While optical sensors measure the greenness of vegetation to enable monitoring of 
its status, their usage is constrained by the continuous cloud cover during crop growth seasons in sub Saharan Africa. Synthetic 
aperture radar data (SAR) are on the other hand capable of penetrating clouds and are sensitive to the structure and moisture 
content of target features, thereby providing complementary information for monitoring crop cultivated fields. This study sought to 
evaluate the sensitivity of Sentinel -1 SAR data to the status of cultivated crop fields that experienced varying rainfall amounts 
between 2015/2016 and 2016/2017 growing seasons as a result of El Niño induced drought in 2015. Dual polarization composites 
per season were classified and through sample farms delineated from Google Earth image, backscatter values were extracted for 
statistical comparisons. The two sample t-test was applied to test significance of the differences between the two seasons at the 
level of farm status. Results showed an overall significant difference (p-value of 0.003< 0.005) in SAR backscatter sensitivity to 
cultivated crop fields during and after the El Niño phenomenon. While these results are encouraging for areas that experience 
clouds during growing seasons, further improvements can be expected by factoring in other variables such as topographic and 
moisture conditions of farms. 

* Corresponding author

1. INTRODUCTION

Crop monitoring is an important aspect in managing food 
security challenges. The monitoring of field crops through 
space technologies is frequently hampered by unprecedented 
climatic conditions. Researchers usually face daunting task in 
monitoring summer or rain-fed crops through optical remote 
sensing because of extensive cloud cover. However, radar 
remote sensing overcame this challenge since it measures the 
backscattering from the objects as opposed to reflectance 
energy onto the objects as in the case of optical remote sensing 
(Lillesand et al., 2008; Balzter et al., 2015). Recent 
developments in radar technologies are translating to the 
generation of earth observation data with improved capacity for 
research in food security in relation to crop monitoring.  

The freely available sentinel satellite product provided by the 
European Space Agency (ESA) has facilitated research on 
mapping earth’s dynamic surface coverage from urban 
landcover (Abdikan et al., 2016; Fonteh et al., 2016) to crop 
areas across different seasons (Lavreniuk et al., 2016), and 
even crop specific monitoring (Chen et al., 2016). The above 
studies have used the standard image classification methods 
onto the pixel values to show various features of interest. 
There has been the use of the single polarization data sets (VH 
or VV) as well as the dual polarization (combining VH and 

VV) and in comparison proven the latter resulted to better
classification accuracy (Abdikan et al., 2016).

The El Niño events of 2015 culminated in drier than average 
drought-induced conditions that extended into March 2016 was 
considered one of the strongest in the last 20years to have hit 
the Southern African region (WFP, 2015). The event caused 
severe rainfall deficits that affected core crop growing season 
from January to March of 2016 with the latter being a critical 
maize crop development stage. This study then seeks to 
evaluate the sensitivity of the Sentinel-1 synthetic aperture 
radar (SAR) data in monitoring farm status for summer field 
crop cultivation as a result of the El Niño induced drought of 
2015/2016 farming season in comparison with the 2016/2017 
season with good rainfall over the northern parts of the Free 
State. This comparison is to be done by assessing farm status 
during the drought-induced season and the normal rainfall 
season. 

2. MATERIALS AND METHODS

2.1 Study area 

The study area is around the farming town of Parys seated 
within the Ngwathe local municipality of the northern section 
of the Free State province of South Africa (Figure 1). This area 
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is situated within the “Maize Triangle” of South Africa. The 
northern section of the Free State boosts itself as the ‘grain 
basket’ of not just the country but also the Southern African 
region. The main summer field crops grown in this area are 
maize, soybeans and sorghum. The annual rainfall over this 
area is about 550 mm and is predominantly in summer 
(October to March) with maximum rainfall month being 
January (103 mm) and minimum being July (0 mm). The daily 
temperatures might rise to a maximum of 27° C during the 
summer months and the daily minimum temperatures can drop 
below 0° C during the winter months of June through to July 
(SA Explorer, 2015). 

Figure 1: Study area within the Free State province of South 
Africa (image is a multiple composite SAR of VV, VH and 

abs(VV*VH) 

2.2 Data acquisition and pre-processing 

The Sentinel-1 is a Synthetic Aperture Radar (SAR) data and 
was acquired through the European Space Agency (ESA) for 
summer cropping seasons in January to March of 2016 and 
2017 along descending orbit over the northern section of the 
Free State. The Sentinel-1A SAR instrument operates at 5.405 
GHz imaging frequency of the C-band, containing the VH and 
VV polarizations with a revisit cycle of 12 days. The geometric 
resolution of Sentinel-1 is 10m. 

Seasons Dates acquired 
2015/2016 January 24th 

February 17th 
March 12th 

2016/2017 January 18th 
February 11th 
March 19th 

Table 1: Acquired SAR data 

The Sentinel-1A data that was acquired as Level-1 Ground 
Range Detected (GRD) product downloaded through Scientific 
Data Hub of Sentinels (https://scihub.esa.int/dhus/) requires 
pre-processing that was done with the Sentinel Application 
Platform (SNAP software 5.0) S-1 Tool box through the 
various steps;  

1. The radiometric calibration that enables the
conversion of the VH/VV amplitude digital pixel
values to the sigma naught (σ°) values,

2. There is the presence of inherent noise or speckles on
the data as a result of constructive and deconstructive
interferences of reflected signals. The presence of

such speckles might interfere with the classification 
of the image (Lu et al., 2008). It is therefore, 
necessary to suppress such noises and in this case the 
3X3 Lee filter was applied. 

3. The filtered images had to undergo terrain correction
through the Range Doppler Terrain Correction using
a 30m DEM. The processed SAR data was exported
into the Geotiff format for further analysis in ENVI
5.0 and ArcMap 10.3.

A multi-temporal dual polarization composite dataset for the 
drought-induced (2015/2016) and the normal-rainfall seasons 
(2016/2017) were created through stacking of the 3 images per 
season. The dual polarization options used in this study 
included the difference (VV-VH), ratio (abs(VV/VH)) and 
multiple (abs(VV*VH)). The composite made of multiple 
produced better classification accuracy in this study and was 
used for further statistical analyses. 

2.3 Image classification 

The preparation for supervised classification of the multi-
temporal images required the Jeffries Matusita (J-M) distance 
index to test separability of the six classes being mapped out in 
this study. These classes included settlement, crop fields, 
bareland, uncropped fields, open grassland and water body. 
The index assesses through statistical patterns that measure the 
average distance between two class densities to ascertain 
separability (Richards & Jia, 2006). The acceptable threshold 
value for separability between pairs in remote sensing is ≥ 1.6 
as the value lies within 0 to 2 (Schmidt & Skidmore, 2003) and 
this study realized a value ≥ 1.78. 

The Random forest algorithm was chosen for classification as it 
is insensitive to noise and overtraining (Breiman, 2001). 
Through a detailed visual examination, training data samples 
for each class were identified from the images.  Then the 
classification algorithm was applied to the dual polarized 
images based on the determined training patterns and reference 
materials. A classification performance assessment was done 
through a confusion matrix with the various accuracy 
parameters derived including the producer’s, user’s and overall 
accuracies (PA, UA and OA). This was performed with the 
digitized polygons or fields (90) from Google Earth for the 
study area. 

2.4 Statistical analysis 

Backscatter values were extracted from the classified images 
per delineated field for further statistical analysis. The 
extracted backscatter values for both seasons had to undergo 
statistical test of significance. The two-sample t-test was 
chosen for testing the means from both seasons after the 
normality test of data distribution was performed (Figure 3). 
The robust nature of the two-sample t-test largely depends on 
the fact that both samples are drawn randomly from a normally 
distributed population of equal variance (Zar, 1996). The test 
of significant difference between the seasons was based on the 
hypothesis that means from both the drought-induced season 
(2016) and normal-rainfall season (2017) were different. 
Implying H0: μ1= μ2 as opposed to the alternative; H1: μ1≠ μ2. 
The t-test was conducted using equation 1. 
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(1) 

where  t-test 
 ,  = means 
,  = standard deviations 

 , = sample sizes of the 2015/2016 and 
2016/2017 growing season 

3. RESULTS AND DISCUSSION

The classification of the multi-temporal composite SAR images 
per season (Figure 2) yielded overall accuracy assessments of 
71.3% and 75.9% for the drought-induced 2016 season and 
normal-rainfall 2017 season respectively.  The difference in 
classification accuracies was as a result of misclassification of 
crop fields as either uncropped fields or open grassland and in 
some cases as bareland in the 2016 image. The drought-
induced conditions experienced over this area could account for 
the reduction in both soil and plant moisture thereby leading to 
either dried and unavailable vegetation. There were also 
incidences of crop failure that the fields were also 
misclassified as bareland. 

Figure 2: Classified dual polarised composite images of 2016 
and 2017 

The classified fields as uncropped or bareland on 2016 became 
classified as crop fields on the 2017 image as more clearly 
illustrated by the highlighted regions in Figure 3. The mean 
comparison for both seasons was difference as most of the 
fields in 2016 recorded higher backscatter values than in 2017. 
In areas where the class difference was a main switch like 
bareland or open grassland to crop fields, the mean difference 
was greater than in a case with the same class over both 
seasons (Figure 3). 

Figure 3: Mean backscatter values comparing between 2016 
and 2017 over delineated fields 

Figure 4: Mean backscatter data distribution for both seasons 

Figure 5: Mean comparison of classes for both season 

There was seemingly an increase in the open grassland class in 
2017 as opposed to 2016 which could be partly linked to the 
contribution of the good rainfall received in the former season. 
Water bodies were more clearly classified in 2017 than in 2016 
which could have been as a result of the shallow nature of 
these bodies as volumes were reduced during the drought 
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season (2016). An example is the lake that is clearly visible on 
the classified image of 2017 whereas it was classified as 
bareland in 2016 (Figure 2). However, the class comparison 
over both seasons did not show any difference in water body 
(Figure 6) because within the area they were limited.  

Figure 6: Comparison of the different classes over both seasons 

Backscatter values are characterised by the different land cover 
types or even different conditions of the same field at different 
seasonal changes. These backscatter values can then contribute 
in the assessment of the field status as a result of the El Nino 
event over this area. Backscatter variability temporarily at 
pixel level was calculated for each delineated field for both 
seasons. Temporal variability of the crop fields was of 
particular interest among all classes for the scope of this study. 

SAR data is known to be sensitive not just to cover type but 
also structure of the objects which contribute to the volume of 
the scattering process (Cloude, 2010; O’Grady et al., 2013). 
This concept was linked to the backscatter values recorded for 
some of the permanent classes such as settlement, waterbody 
and even the crop fields on the 2016 classified composite 
image. The backscatter volume in vegetated areas like that of 
this current study proved that more stable variations will be 
recorded over dense and deeply-rooted vegetation than the 
reverse scenario (Mtamba et al., 2015). This could account for 
the significant difference in the backscatter values 
between2016 and 2017 which was greatly influenced by a 
climatic event that impacted on not just the soil water moisture 
but also the density of the cultivated or crop fields. 

In some cases the bareland was misclassified as water body in 
the 2017 composite and which could be attributed to the 
moisture contents in the soils during this season of good 
rainfall as well as ponding water on both the cropped and 
uncropped fields. It should be noted that some of the classes 
such as bareland and uncropped fields as well as the open 
grassland areas especially those of sparse coverage were hardly 
differentiated by the backscatter values. Hence, there would be 
a need for more robust methodological approaches on such data 
to enable easy differentiation of classes as such. Some of the 
methodological propositions have been along the lines of 
polarimetric parameters such as dominant alpha. 

4. CONCLUSIONS

The evaluation of SAR S1 data sensitivity to the status of farms 
(cultivated with crops, cultivated without crops and open 
grassland) through statistical comparison of their backscatter 
values during a drought-induced summer season and a normal 
rainfall season was successfully attained an overall significant 
difference (p-value of 0.007 < 0.05) in SAR backscatter 
sensitivity to cultivated crop fields during and after the El Niño 
phenomenon. While these results are encouraging for areas that 
experience clouds during growing seasons, further 
improvements can be expected by factoring in other variables 
such as topographic and moisture conditions of farms. 
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