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ABSTRACT: 

 

Vehicle tracking is of great importance in urban traffic systems, and the adoption of lidar technologies - including on-board and 

roadside systems - has significant potential for such applications. This research therefore proposes and develops an image-based 

vehicle-tracking framework from roadside lidar data to track the precise location and speed of a vehicle. Prior to tracking, vehicles 

are detected in point clouds through a three-step procedure. Cluster tracking then provides initial tracking results. The second 

tracking stage aims to provide more precise results, in which two strategies are developed and tested: frame-by-frame and model-

matching strategies. For each strategy, tracking is implemented through two threads by converting the 3D point cloud clusters into 

2D images relating to the plan and side views along the tracked vehicle’s trajectory. During this process, image registration is 

exploited in order to retrieve the transformation parameters between every image pair. Based on these transformations, vehicle 

speeds are determined directly based on (a) the locations of the chosen tracking point in the first strategy; (b) a vehicle model is built 

and tracking point locations can be calculated after matching every frame with the model in the second strategy. In contrast with 

other existing methods, the proposed method provides improved vehicle tracking via points instead of clusters. Moreover, tracking in 

a decomposed manner provides an opportunity to cross-validate the results from different views. The effectiveness of this method 

has been evaluated using roadside lidar data obtained by a Robosense 32-line laser scanner.   

 

 

1. INTRODUCTION 

Efficient vehicle tracking is a critical component of many 

Intelligent Transportation Systems (ITS) and is of great 

importance for the improvement of both traffic conditions and 

the environment. The ability to track vehicles through a 

controlled area can help observe, and hence prevent traffic 

violations such as speeding, frequent lane changes and drink 

driving (Sanchez et al., 2011). Furthermore, vehicle tracking 

provides an efficient means to study the interaction between 

vehicle dynamics and emissions (Khalfan et al., 2015).  

 

Recently, interest in lidar technologies in the field of vehicle 

tracking has increased due to reduced cost and high fidelity of 

point cloud measurements (Shirazi and Morris, 2017). 

Moreover, mobile or fixed lidar systems usually consist of a 

certain number of laser arrays rotating rapidly around the 

vertical axis so that the surroundings are continuously scanned, 

greatly improving the completeness of the acquired vehicle data 

(Xiao et al., 2017). Another important fact is that lidar data 

contains 3D information of vehicles, which is essential for 

traffic modelling.  Yao et al. (2012) investigated the theoretical 

background for airborne laser scanning (ALS) systems that were 

used to monitor traffic from airborne platforms. Although the 

results showed potential in supporting traffic monitoring 

applications, they were not comparable with those of optical or 

ground-based sensors. Luo et al. (2016) published a novel real-

time multiple vehicle detection and tracking algorithm based 

purely on a Velodyne HDL-32E sensor that can be decomposed 

into three steps: segmentation, clustering and tracking. A fast 

and efficient real time clustering algorithm called the radially 

bounded nearest neighbour (RBNN) is used in the second step. 

A Hungarian algorithm procedure and adaptive Kalman filtering 

are used for data association and tracking. Chen et al. (2016)     

provided a dynamic vehicle detection and tracking algorithm to 

solve the problem that dynamic vehicles occluded by other 

objects cannot be detected and tracked by other methods. For 

tracking dynamic vehicles, the Scaling Series algorithm coupled 

with a Bayesian Filter (SSBF) is improved by adding the ego-

motion compensation so that it is able to update the pose and 

velocity for each vehicle in dynamic background scenes. 

 

As opposed to lidar applications on autonomous vehicles, as 

described above, for roadside traffic surveillance lidar sensors 

are usually installed at a fixed location instead of on a moving 

vehicle. The vehicle tracking system should be scalable and 

robust to track vehicles with fewer lidar points. Sun et al. (2018) 

developed a framework specifically to extract high-resolution 

vehicle trajectories from roadside lidar sensors. The procedure 

involved three main steps: vehicle data cloud clustering; vehicle 

location estimation through a principle component-based 

oriented bounding box method; and geometrically-based 

tracking. Wu et al. (2018) presented an automatic procedure for 

vehicle tracking with a roadside lidar sensor involving 

background filtering, lane identification, and vehicle speed 

tracking. Notably, for vehicle tracking from roadside lidar data, 

a number of previous studies used the average of all points in a 

cluster as the tracking point, which may cause large errors as the 

location and number of points in one cluster can vary with 

distance from the lidar sensor. To continuously track the 

location and speed of a vehicle more precisely, the point nearest 

to the lidar sensor on the vehicle is selected as the tracking 

point (Sun et al., 2018; Wu et al., 2018). More specifically, 

when the target vehicle is approaching the lidar, the nearest 

point is the front corner point. When it is leaving the lidar, the 

nearest point is the back corner point of the vehicle. 
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Figure 1. Framework of the proposed methodology.

Even though the adopted strategy provides improvements on 

previous work, it is still not as precise and convenient as 

choosing a fixed point throughout the entire tracking process. 

To locate a selected tracking point in each frame, it is necessary 

to determine the relationship between every two successive 

vehicle clusters via registration. Many studies have employed 

variants of the Iterative Closest Point (ICP) algorithm (Besl and 

McKay, 1992) for local registration of 3D overlapping scans 

(e.g. Byun et al., 2017). The algorithm iteratively establishes 

correspondences between the points of two point cloud datasets, 

computes the spatial distances between them and terminates 

when the sum of the spatial distances between the 

correspondences is at a minimum (Sanchez et al., 2017). 

However, this approach is computationally expensive since it 

requires an extensive search of point correspondences between 

the point clouds (Godin et al., 1994). Moreover, this method 

faces local minima issues and often needs a coarse initial 

alignment to converge to the optimum solution (Sanchez et al., 

2017). To avoid such problems in 3D point cloud registration, 

2D image-based point cloud registration approaches have been 

proposed in some studies (e.g. Lin et al., 2017; Christodoulou, 

2018). 

  

In order to perform vehicle tracking from roadside lidar data 

continuously and precisely, this study focuses on an image-

based tracking framework via a fixed point. By converting each 

vehicle 3D lidar point cluster to a 2D image in both the plan 

and side view along the vehicle trajectory, the 3D point cloud-

based vehicle tracking problem is decomposed into two image-

based vehicle tracking procedures. To locate the selected 

tracking point in each frame, image registration is performed 

using template matching to determine the transformation 

parameters for every two successive images. The proposed 

method aims to provide improved vehicle tracking via points 

instead of clusters. In addition, tracking in a decomposed 

manner provides an opportunity to cross-validate the results 

from different views. 

 

 

2. METHODOLOGY 

A tracking-by-detection strategy (Asvadi et al., 2016) is adopted 

in the proposed method consisting of two components: vehicle 

detection and vehicle tracking, as illustrated in Figure 1.  

  

2.1 Vehicle detection 

 

The vehicle detection stage comprises three sub-steps: moving 

point detection; clustering; vehicle and non-vehicle 

classification. The Max-Distance method is adopted for moving 

point detection, after which the extracted moving points                                       

(including those on vehicles and non-vehicles) are grouped 

through a simple Euclidean Cluster Extraction algorithm. A 

traditional but efficient machine learning strategy, the Support 

Vector Machine (SVM), is used for vehicle and non-vehicle 

classification, and 3D object level features are selected to 

distinguish two classes of clusters.  

 

 
Figure 2. (a) Original frame (b) moving points (c) clustering 

results (d) classification results. 

 

2.1.1 Moving point detection: The Max-Distance method 

(Xiao et al., 2016a) is utilized for moving point detection from 

Car Pedestrians Trees 

(a) 

(b) 

Pedestrians 

(c) 

(d) 
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static laser scanning. The principle is straightforward: The static 

environment is assumed impenetrable and only the furthest 

points of each laser beam are considered to be located on the 

static background. Therefore, points on moving objects appear 

between the laser scanner centre and the far end points and they 

can be extracted by constructing the background (Figure 2(b)). 

 

2.1.2 Clustering:  The Euclidean Cluster Extraction algorithm 

is used in this step. Here, two parameters are important: the 

cluster size S, and the cluster tolerance d. The minimum cluster 

size S1 and the maximum cluster size S2 should be determined 

according to the dataset. For cluster tolerance d, if the value is 

too small, an actual object can be seen as multiple clusters. 

Conversely, if the value is too large, multiple objects will be 

regarded as one cluster. Therefore, heuristic testing is required 

to determine the optimal value for the dataset. Figure 2(c) 

shows the clustering result for the extracted moving points. 

 

2.1.3 Vehicle and non-vehicle classification: Traditional 

machine learning is an efficient method for vehicle detection 

from lidar data, in which two important aspects are feature 

extraction and sample selection. Low-level features based on an 

individual point or a small group of points, such as 

dimensionality, are used in of the majority of studies (Demantké 

et al., 2011). In this case, the input for vehicle detection is 

moving point clusters, so the features extracted in the proposed 

method are at object level in 3D (Hwang et al., 2016; Xiao et al., 

2016b): 

(1)   Standard deviations of coordinates x, y, z for points in 

the bounding box (std(x), std(y), std(z)); 

(2)  The volume size of the bounding box: depth, width, 

max_height, min_height (d, w, h1, h2); 

(3)  Vertical point distribution histogram (v1 . . . v10): if 

the input object is vertically divided into even parts 

from a certain height to the ground, a histogram 

containing the point proportion regarding the overall 

number of points at each vertical part can be regarded 

as the feature to distinguish vehicle and non-vehicles. 

The vehicles are divided into 10 parts and each is 

20 cm high based on the assumption that maximum 

height of studied vehicles is lower than 2 m.  

 

Since this classification is dealt with as a binary problem, the 

training sample dataset mainly includes vehicles and non-

vehicles (referring to all the other road users). These samples 

were chosen manually using CloudCompare software from the 

frames processed by the clustering operation. A SVM with RBF 

kernel was used as the classifier.  

 

2.2 Vehicle tracking 

 

To obtain improved precision, the proposed framework is 

composed of two parts: cluster tracking and point tracking. The 

first component is to provide initial results by finding the 

clusters for the target vehicle in the frames. Subsequently, the 

second component focuses on locating the chosen tracking 

point in every frame to obtain refined results.  

 

2.2.1 Cluster tracking: Cluster tracking refers to identifying 

clusters belonging to the same car in each successive frame. The 

principles to judge whether two clusters in consecutive frames 

belong to the same car are described as:  

 

(1) The similarity degree between two feature matrices is 

larger than t1, here, the features are the same as those 

used in vehicle detection;  

(2) The physical distance is smaller than t2;  

(3) The orientation change between two clusters is within 

(-t3, t3). It is can be determined according to practice: 

firstly, as the frequency of the roadside scanner is 

extremely high and the speed of vehicles on city roads 

is limited, a judgement can be made that the 

geometrical similarity of two successive clusters 

belonging to the same car is much higher than that of 

different cars. Therefore, t1 is defined to be 0.9. 

Secondly, t2=V*T, here, V is the maximum speed in 

the study area complying with the road speed 

limitation regulations in United Kingdom. T is the 

time interval between two frames from the laser 

scanner. Finally, the orientation of the car does not 

change greatly during short time interval, even when 

the car is changing lanes or turning. Here, t3 is set to 

10 degrees. Combining t2 and t3, the search range is a 

sector with R= t1 and   =20 degrees.  

 

The cluster tracking algorithm is illustrated in Figure 3. 

 

 

Figure 3. Cluster tracking algorithm.  

2.2.2 Point tracking: In roadside laser scanning, vehicles on 

the road can only be partially scanned when they are passing 

through the laser scanner. The number of points in a vehicle 

cluster varies with the distance from the lidar sensor, and 

consequently the centre of the bounding box (usually regarded 

as the vehicle position) is also changing. This is illustrated in 

Figure 4 by the yellow line in the time-space diagram. Two 

parallel lines (red and blue lines in Figure 4) demonstrate the 

trends of the front and rear parts of the vehicle. It can be seen 

that the trend of the yellow line is different to the other two. 

However, if a fixed tracking point, for instance, the real centroid 

of the vehicle, is chosen during the process then the yellow line 

will be corrected to the green one.  

   

Two strategies are presented to solve this issue. A frame-by-

frame strategy is used to locate the tracking point directly in two 
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successive frames according to the transformation between them. 

A second, model-based, strategy further builds a vehicle model 

based on the obtained transformations within every frame pair, 

then takes the determined centroid as the tracking point and 

back locates it in each frame via model fitting. 

 

 
Figure 4. Time-space diagram of the target vehicle. 

 

Instead of using 3D lidar points directly, image-based vehicle 

tracking is performed by converting 3D lidar point clusters into 

2D images. Decomposing the 3D tracking problem into two 2D 

procedures on the plan and side views also means that the 

tracking results can be cross-validated. Since the tracking flows 

for the two threads are similar, the plan view tracking thread is 

taken here as an example to depict in detail, as shown in Figure 

5 (for the model-based strategy).      

 

 
Figure 5. Plan view tracking. 

Conversion: in the conversion step, each vehicle cluster 

composed of 3D lidar points is converted into a 2D planimetric 

image or side-view image, as shown in Figure 6.   

 

Figure 6. Conversion from 3D points to two 2D images. 

Model construction:  each point cloud cluster obtained from 

the roadside laser scanner represents a section of the vehicle. If 

these sections are patched together according to the correct 

relationship between every successive overlapped image pair, 

an aggregated vehicle model will be constructed.  Based on the 

above assumption, the first image is taken as the reference 

image, then the other images are transformed into the same 

coordinate system so as to build the model, as illustrated in the 

model construction step in Figure 5 and Figure 7.  There will be 

a comparison between the model and the target vehicle in terms 

of the size to assess the accuracy.  

 

  
 

          Figure 7. Model construction from plan and side views.  

 

Image registration is performed using template matching, which 

determines the location of a template within a reference image, 

to compute the transformation parameters ,1NT  between the Nth 

image and the reference image, as defined in equations (2) and 

(3).The template image shifts over every possible location in the 

reference image, pixel by pixel. Considering practical 

considerations that the vehicle may change its orientation when 

changing lane or turning, at every shifted location, the template 

image is rotated from -10 to +10 degrees in increments of 1 

degree and a similarity value is calculated for each rotation. The 

largest value is regarded as the optimum similarity value for this 

location. The optimum matched position of the template image 

is the location where the highest similarity value is found and 

the corresponding rotation is considered as the best rotation. 

The degree of similarity between the two images, namely the 

score value as shown in equation (1) (Ding et al., 2001), is 

calculated with the cross-correlation coefficient metric. A score 

map can be formed after completion of the searching process 

(Figure 8).The optimum match is shown as the red dot in the 

map.  

 

 
Figure 8.  The matching process.     
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In equation (1), t  is the template with a size of m1 x n1 pixels 

and a rotation of  . r is the reference image with a size of m2 x 

n2 pixels. (x,y) is the origin of the sub-image in the reference 

image corresponding to the template. In equation (2), Pi,i-1 is the 

optimum position of the ith image in its reference image, namely 

the (i -1)th image. In equation (3),  ,
i iX Y  is the origin of the thi  

image in its enlarged image (in the matching process for each 
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image pair, the reference image is enlarged by padding 0 around 

it in order to guarantee that all the pixels can be searched by the 

template). i is the rotated angle when the ith image reaches the 

optimum position. 

 

Tracking point location from model matching: the centroid of 

the obtained vehicle model (shown as a red dot in Figure 5), is 

adopted as the tracking point. Due to the fact that the built 

model is aggregated by each image containing a certain part of 

the vehicle according to the transformation parameter TN,1, the 

relative position between the tracked point and each vehicle part 

in the reference image is to be matched. The tracking point can 

be back located to the corresponding image if every single 

image is fitted with the model through a secondary matching. 

Further conversion back into the original lidar frame can be 

achieved as an inverse operation of the conversion step.  

 

The main difference in side view tracking compared to plan 

view tracking is that in the conversion step the vehicle clusters 

are converted into side images along the vehicle trajectory. As 

the target vehicle may change its heading direction during the 

period of observation, to ensure precise tracking, the trajectory 

orientation should be calculated frame by frame with the variant 
  determined in the plan view tracking for each image. If the 

orientation of the first vehicle cluster is determined as 0 , the 

orientation of the thi  vehicle cluster can be inferred by adding 

the corresponding rotation angle. 

 

The orientation of the first cluster should equal that of the 

model because the model is built on the first image. To 

determine its orientation, edges are extracted using the Canny 

operator (Ding and Goshtasby, 2001) on the model and then 

lines are determined using the Hough transform 

(Mukhopadhyay and Chaudhuri, 2015). The direction of the 

longest line can be regarded as the orientation of the first cluster 

and therefore the model (Figure 9).  

 

 

               Figure 9. The vehicle model and its orientation. 

                                                                    

                                                                     

3. EXPERIMENTS AND ANALYSIS 

3.1 Dataset and study area for vehicle detection 

  

This research employed a RS-LiDAR-32, a cost-efficient 360º 

lidar sensor from RoboSense for analysis. The sensor has a 

detection radius of 0.2 to 200 m and is designed for various 

applications, such as autonomous vehicles, robotics, and 3D 

mapping. It has 32 laser beams, collects data at a speed of 

640,000 pts/s with a scanning frequency of 20 Hz, and covers a 

360º horizontal field of view and a 40º vertical field of view 

with + 15º up and -25º downward look angles. 

 
The study area was Claremont Road, located beside the Cassie 

Building on the campus of Newcastle University, Newcastle 

upon Tyne, UK (Figure 10). A 360º camera was installed next 

to the lidar sensor to provide ground truth for vehicle detection 

validation.                                 

 

Figure 10. Study area for vehicle detection. 

 

3.2 Case studies for vehicle tracking 

                  

Two tests were conducted with a vehicle to evaluate the 

effectiveness of the proposed tracking algorithm. In the 

acquired dataset there are 550 samples, comprising 375 vehicle 

samples and 175 non-vehicle samples. The detection 

performance is evaluated by three indicators: Recall (Rec), 

Precision (Pre) and F1 score (2Rec × Pre/(Rec + Pre)) (Table 1). 

 

TP FP TN FN Pre Rec 
F1 

score 

362 26 12 23 93.30 94.03 93.66 

 

Table 1. Vehicle detection accuracy (TP: True Positives; FP: 

False Positives; TN: True Negatives; FN: False Negatives.). 

 

From two sets of results of the frame-by-frame strategy, shown 

in Figure 11 and Table 2, the following observations can be 

obtained:  

 

(1) The RMS values between the tracked velocities from two 

tracking threads are smaller than 0.25 m/s (0.220 m/s for case 

one, 0.249 m/s for case two), which means the displacement 

deviations are smaller than 0.013 m during each time interval 

(0.05 s). Considering that the image resolution is 0.03 m 

(described above), these deviations are within one pixel. As the 

accuracy of the tracking results can’t be better than the adopted 

pixel-by-pixel matching process, the tracking results from the 

two views can be regarded as consistent. This consistency 

demonstrates the reliability of the tracking strategy because the 

two tracking threads are executed separately.  

 

(2) In case one, the target vehicle accelerated rapidly from a 

standstill to its maximum speed, then it slowed down slowly to 

a stop. In case two, the target vehicle entered the scanning area 

at a constant speed after which it decelerated slightly before 

speeding up. From Figure 11, it can be seen that the estimated 

trend of the vehicles are in accordance with real conditions 

described above, providing further validation for the 

applicability of the proposed method. 

 

(3) It can be found by further examination of Figure 11 that 

some large fluctuations occur in plan view tracking; e.g. from 

1.25 s to 1.75 s (frame 25 to 35) in case one and from 2.15 s to 

2.65 s (fame 43 to 53) in case two. Possible explanations for the 

fluctuations are as follows: in these frames, only the near edge 

of the vehicle was scanned, therefore, there was possibly 

insufficient detail in the corresponding binary plan view images, 

causing inaccurate matching positions and jumps in calculated 

velocities. The influence of these fluctuations on the final 

results is lessened by the counterbalance from side view 

tracking which is not affected. This analysis demonstrates an 

advantage of tracking from two views.        

 

A 

B 
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(a) Tracking results for case study one. 

   
(b) Tracking results for case study two. 

Figure 11. Tracking results for the two case studies. 

Case 

study 

Number of 

frames 

RMS error 

(m/s) 

Computation 

time (s) 

1 100 0.220 36.5 

2 80 0.249  29.3 

Table 2.   Parameters for the two case studies. 

 

However, the approach adopted in is study can only perform 

near field tracking: the average speeds of the two cases are 

1.749 m/s and 2.736 m/s, and the tracking time is 5 s and 4 s, so 

the tracking ranges are 8.75 m and 10.95 m, respectively. There 

are two primary reasons for the short tracking range: firstly, 

vehicles in the far field do not have a clear shape so that they 

are removed as false alarms at the detection stage; secondly, 

occlusions occur when the target vehicle is in the lane furthest 

from the sensor, greatly influencing the tracking procedure as 

tracking will cease if the search result is empty in two 

successive frames during cluster tracking stage. Further work 

therefore needs to be undertaken to improve robustness and 

extend the tracking range.  

 

3.3 Comparison between different methods  

 

(1) Point and cluster tracking 

To better illustrate the advantage of point tracking over cluster 

tracking, comparative results are shown in Figure 12. The use of 

the average point of the cluster (which is variable in roadside 

laser scanning) as the tracking point clearly causes greater 

fluctuations than the point based approach. 

 

(2) Frame-by frame and model-based tracking 

 

Frame-by-frame tracking is straightforward: the positions of the 

point are found in two consequent frames based on the 

transformation parameters calculated through matching-based 

image registration. However, image matching will cause 

registration errors due to its pixel-by-pixel operation. To 

minimise these random errors, a model is built after aggregating 

all the frames on the basis of the calculated transformations.  In 

these two cases, the length offset between the model and the 

target vehicle is within 30 cm. Taking the image resolution 

(0.03m) and the total number of tracking frames (100 in case 

one, 80 in case two)  into account, the model can be regarded as 

accurate enough for further usage. The tracking point can then 

be located to frames after secondary matching them with the 

model. Figure 13 shows the comparative results between frame- 

by-frame and model-based tracking. Although showing a 

similar pattern, there is a small offset between the two sets of 

results. Unfortunately, as insufficient ground truth data exists in 

the current test dataset, further trials are required to validate the 

model-based approach. 

 

 
(a) 

 
(b) 

Figure 12. Comparison between point and cluster tracking 

results. 

 

 
                                              (a) 

 
(b) 

Figure 13. Comparison of frame-by-frame and model-based 

tracking results. 

 

4. CONCLUSIONS 

This paper reports research to develop an image-based vehicle 

tracking approach from roadside lidar data. The 3D point cloud-

based vehicle tracking problem is decomposed into two image-

based vehicle tracking procedures from a plan and side view 
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along the tracked vehicle’s trajectory. A point tracking 

operation has been added in addition to traditional cluster 

tracking to improve tracking precision.  

 

The main contributions of this work are twofold: (1) more 

precise vehicle tracking is provided via point instead of cluster 

tracking; (2) the twin-track procedures provide opportunity to 

validate the results from two different views. The effectiveness 

of this method has been evaluated through two case studies. 

Further work will focus on  extending the range of the vehicle 

tracking by applying new algorithms to make the procedures 

more robust and deploying multiple sensors along the roadside. 

Moreover, camera imagery can supplement lidar data to achieve 

better vehicle detection performance.  
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