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ABSTRACT: 

 
This study investigates the usability of low-attitude unmanned aerial vehicle (UAV) acquiring high resolution images for the 

geometry reconstruction of opencast mine. Image modelling techniques like Structure from Motion (SfM) and Patch-based Multi-

view Stereo (PMVS) algorithms are used to generate dense 3D point cloud from UAV collections. Then, precision of 3D point cloud 

will be first evaluated based on Real-time Kinematic (RTK) ground control points (GCPs) at point level. The experimental result 

shows that the mean square error of the UAV point cloud is 0.11m. Digital surface model (DSM) of the study area is generated from 

UAV point cloud, and compared with that from the Terrestrial Laser Scanner (TLS) data for further comparison at the surface level. 

Discrepancy map of 3D distances based on DSMs shows that most deviation is less than ±0.4m and the relative error of the volume 

is 1.55%. 
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1. INTRODUCTION 

Opencast mine is usually in a complex and changeable 

industrial environment that it is necessary to estimate the 

exploitation quantity and monitor mine safety. Unmanned aerial 

vehicles (UAVs) equipped with digital cameras can be used to 

acquire high temporal and spatial resolution images over 

traditional remote sensing methods with low-cost and more 

flexible deployments (Eisenbeiss, et al., 2004). UAV images 

was utilized successfully to generate ortho-mosaic and digital 

terrain model (DTM) in landslide investigations and had 

achieved comparable results as compared to that of terrestrial 

laser scan data (Niethammer et al.,2011). There are 

considerable successes in automated reconstruction of 3D point 

cloud from image sequences in computer vision (CV) (Hartley 

et al., 2000 & Niethammer el al., 2012). The 3D surfaces and 

topography accuracy reconstructed from UAV images was 

evaluated by James et al. (2012) and Douterloigne et al. (2010). 

It was shown that such low-cost and more flexible approaches 

can achieve good performance. 3D disaster scene was also 

reconstructed from UAV images with flight control data (Shen 

et al., 2011). The scene relative error is less than 0.4%, which 

demonstrates that the proposed UAV images reconstruction for 

disaster surveying is feasible and effective. Digital surface 

models (DSMs) generated from UAV imagery and Terrestrial 

Laser Scanner (TLS) are compared in a cultural heritage 

(Eisenbeiss et al. 2006). 

In this paper, we recover the scene geometry by 

implementing the Structure from Motion (SfM) and Patch-

based Multi-View Stereo (PMVS) algorithms, generating a 

couple of point cloud with relative high density. And then, we 

evaluate the 3D geometrical model at a point level for absolute 

accuracy assessment. Finally, DSMs generated from UAV point 

cloud was compared with that from TLS data and the relative 

error was evaluated. 

2. UAV Platform and Images Acquisition 

2.1 UAV Platform 

The UAV platform used in this study is a multi-rotor BNU-D8-

1, with eight rotating wings (Fig.1). This platform is stabilized 

with a consumer digital camera (Canon 5D mark II, 21 

Megapixel, 5616×3744 pixels), and the camera’s zoom and the 

aperture are set to be fixed values when aerial navigation. The 

UAV flight control system is stabilized with inertial 

measurement units (IMUs) and the endurance is up to 30 

minutes using a lithium battery pack with a capacity of ~5Ah. It 

can be radio-controlled manually or automatically based on the 

self-learning neural network adaptive control technology 

(BrainyBEE autopilot system V4.11). 

 

Fig.1. UAV platform BNU-D8-1 
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2.2 Study area and data acquisition 

The study site is a highly dynamic detritus dump located at Zijin 

Mine (Fig.2), in Fujian Province, Southeast of China. On July 

8th, 2013, a UAV flight campaign was carried out at the study 

area, while a new detritus dump (100×100m) with complex 

topography and large elevation difference was under 

accumulating. To ensure the whole detritus dump area was 

covered, the BNU-D8-1 was manually controlled and adjusted 

its altitude during the flight to keep the distance above the 

detritus dump remain relatively constant. Manually control of 

UAV often leads to deviations during the flight navigation, and 

the deviation of images resolution has to be accepted. The flight 

is 50 meters above the ground, 32 optical images with high 

overlaps were acquired. The ground resolution is approximate 

0.01m per pixel.  

17 cross cardboards (the size is 105×297mm) were 

approximate evenly-distributed over the site and were used as 

ground control points (GCPs). The cardboards are affixed to the 

stones and clearly marked in the aerial images. The GCPs were 

measured by Global Positioning System Real-time Kinematic 

(GPS-RTK) with an accuracy of 2~3cm in plane and 5cm in 

vertical. However, some of the GCPs were badly appeared in 

the images and were rejected in the post processing (Eisenbeiss 

et al. 2005). 

 

Fig.2 UAV image with GCPs of detritus dump, at Zijin 

Mine 

3. METHODOLOGY  

3.1 Processing of UAV images 

In this paper, the UAV images are processed as follows (Fig.3). 

First, images quality will be checked after UAV images acquired, 

and remove ghost images or dislocation images in the following 

process. Then, 3D Geometry of UAV images will be 

reconstructed using different algorithms. Next, GCPs will be 

used to register 3D point could with geographic coordinate 

system. Finally, the reconstruction model precision will be 

evaluated with GCPs and TLS data. 
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Fig.3 Workflow for the processing of UAV images 

3.2 3D Geometry Reconstruction with UAV Images 

Computer Vision (CV) is highly advanced in recently years and 

new algorithms have been developed for processing images. 

Among these algorithms, SfM algorithm is utilized as a cost 

effective method for processing sets of overlapping UAV 

images for processing sparse 3D models (Koenderink et al. 

1991 & Snavely et al. 2008). The process of SfM refers to three 

major stages of feature detection, image matching as well as 

bundler adjustment.  

To start the SfM, distinctive features with unique descriptors 

are first detected with the Scale Invariant Feature Transform 

(SIFT) algorithm, each of which indexed with a 128 -element 

vector. And then, Approximate Nearest Neighbours algorithm 

(ANN) based on K-D tree is used for coarse matching by 

comparing the Euclidean distance between vectors of potential 

correspondences.  

FMset is referred to these feature points pairs sets that have 

matching relations. 
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Where fm represents target images Pm and fnn is the images to 

be matched PTG, respectively.  

For each point in the first image of an image pair we search 

for the best and second best candidates in the other image. In 

case of the ratio 
sec

/
ond best

r d d  of the certain measures for the 

second best to the best candidate is lower than a certain 

threshold.  The mismatching possibility is lower when r is 

smaller. In this paper, we choose r<0.6 as potential feasible 

correspondence. 

To further eliminate the mismatching points of coarse 

matching, Random Sample Consensus (RANSAC) (Fischler et 

al. 1981) strategy and eight-point algorithms (Hartley et al., 

2000) are applied for fine matching. Point cloud will be 

transformed to plane coordinates with perspective projection. 

The geometric projection error is used as objective function 

g(C,p). 

   
2

, ,

1 1

, ,
n t

i f i f i f

i f

g C p w q r C p
 

                   (3) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-4, 2014
ISPRS Technical Commission IV Symposium, 14 – 16 May 2014, Suzhou, China

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-4-297-2014 298



 

,

1,
=

0,
i f

f i
w

f i






                                                             (4) 

Where  

C = camera parameter 

p = point cloud coordinates 

n = camera points, also refers to the total number of images 

UAV acquired 

t=fine matching points 

The Sparse Bundle Adjustment (SBA) algorithm is applied to 

solve the nonlinear least squares of objective function g(C,p). 

The geometric projection error g(C,p) will be reduced by 

gradually iteration, and optimal camera position as well as flight 

attitude will be achieved (Snavely et al. 2008). Based on the 

flight attitude, 3D Geometry of study area can be reconstructed.  

In order to improve the level of details in the point cloud, 

Patch-based Multi-view Stereo (PMVS) algorithm (Furukawa et 

al. 2009) is further used to obtain the dense point cloud.  

3.3 Geo-registration 

Geo-registration refers to register 3D reconstruction point cloud 

with geographic coordinate system. The point cloud 

reconstructed with SfM is in space rectangular coordinate 

system. Point cloud can be transformed to WGS-84 coordinate 

system with measured GCPs. Transformation parameters are 

computed by Bursa’s 7-parameter models and indirect 

adjustment using three or more common points in both 

coordinate. Then, 3D point cloud model scan be transformed to 

WGS-84 space rectangular coordinate. 

3.4 Accuracy Evaluation 

The accuracy of the 3D geometry is evaluated both with GCPs 

and TLS point cloud. UAV point cloud is first evaluated at the 

point level by comparing the absolute coordinate between UAV 

point cloud and GCPs. Further difference is computed with the 

analysis of DSM difference from both UAV point cloud and 

TLS. The 3D dense point cloud generated from PMVS allows 

us to generate high resolution DSMs with RISCAN PRO 

software.  

4. RESULTS 

4.1 3D point cloud model 

3D dense point cloud is reconstructed with SfM and PMVS 

algorithm. The density of the point cloud (Fig.4) is 400 points 

about per square meter.  

 
Fig.4 3D dense model of study area 

4.2 Point cloud precision of UAV images  

Comparison the GCPs with UAV points, 12 control points are 

participated in the experiment. The absolute error of each point 

was shown in Fig.5. The mean square errors of each direction 

are 0.07
x

m  , 0.08
y

m  , 0.02
z

m  . The compared of GPS 

measured GPCs and PMVS-based model shows that there is a 

significant planar error than height direction. The mean square 

error of point is 0.11
p

m  , which shows that the precision of 

PVSM-based points can reach to the sub-meter level, which is 

admitted in mine.  

 

Fig.5 UAV point cloud precision  

4.3 Surface precision evaluation 

In order to evaluate the feature precision of UAV point cloud, 

Riegl VZ-4000 was used to acquire high resolution point cloud 

of the detritus dump simultaneously with UAV flight. Fig.6 is 

the TLS point cloud, where the blind spots and loopholes are 

due to the limitation of fixed Field of View (FOV).  

 

Fig.6 TLS point cloud of study area 

Two datasets all include the same side surface areas of 

detritus dump. These side areas are compared and analyzed with 

respect to accuracy, resolution and applicability to opencast 

mine. With manually coarse registration and multi station 

adjustment using RISCAN PRO software, two surfaces are 

compared at surface level. 

The resolution of UAV point cloud and TLS point cloud are 

all resampled to 5cm. Triangulated Irregular Networks (TINs) 

are first generated based on the two datasets.  A discrepancy 

map of two features was carried out by RIEGL PRO (Fig.7). 

The 3D comparison of both DSMs shows maximum deviation 

reaches from -1.0m to 0.98m, while most deviations are less 
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than ±0.4m. Maximum deviation appeared in local area was due 

to ore rolling or creeping down during data collection. 

Relative precision can be evaluated by the calculating 

distance between two surfaces. With an x-y auxiliary plane, the 

volume of these two features can be calculated, and the relative 

error of volume is 1.55%. 

  

Fig.7 Discrepancy map of 3D distances based on DSMs 

5. CONCLUSIONS 

In this study, low-attitude UAV was applied to acquire high 

resolution and overlaps images at an opencast mine. With SfM 

algorithm and PVMS algorithm being applied to images 

reconstruction, 3D dense point cloud was extracted. RTK and 

TLS LiDAR were used in the study to evaluate the accuracy of 

3D geometry, and geometry precision was evaluated both in 

point level and surface level. The result shows that both have 

achieved good performance for mine applications. In future 

study, UAV will be applied to monitor the opencast mine 

exploitation quantity.  
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