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Abstract
Recently, various pre-trained language models
(PLMs) have been proposed to prove their impres-
sive performances on a wide range of few-shot tasks.
However, limited by the unstructured prior knowl-
edge in PLMs, it is difficult to maintain consistent
performance on complex structured scenarios, such
as hierarchical text classification (HTC), especially
when the downstream data is extremely scarce. The
main challenge is how to transfer the unstructured
semantic space in PLMs to the downstream domain
hierarchy. Unlike previous work on HTC which
directly performs multi-label classification or uses
graph neural network (GNN) to inject label hierar-
chy, in this work, we study the HTC problem un-
der a few-shot setting to adapt knowledge in PLMs
from an unstructured manner to the downstream
hierarchy. Technically, we design a simple yet ef-
fective method named Hierarchical Iterative Con-
ditional Random Field (HierICRF) to search the
most domain-challenging directions and exquisitely
crafts domain-hierarchy adaptation as a hierarchical
iterative language modeling problem, and then it
encourages the model to make hierarchical consis-
tency self-correction during the inference, thereby
achieving knowledge transfer with hierarchical con-
sistency preservation. We perform HierICRF on var-
ious architectures, and extensive experiments on two
popular HTC datasets demonstrate that prompt with
HierICRF significantly boosts the few-shot HTC
performance with an average Micro-F1 by 28.80%
to 1.50% and Macro-F1 by 36.29% to 1.5% over
the previous state-of-the-art (SOTA) baselines under
few-shot settings, while remaining SOTA hierarchi-
cal consistency performance.

1 Introduction
Pre-trained Language Models (PLMs) [Radford et al., 2018;
Devlin et al., 2019; Raffel et al., 2020] have gained significant
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Figure 1: Illustration of methods for HTC. The red sequence rep-
resents the golden label, and the purple sequence represents the
predicted sequence. Hierarchical inconsistency happens when the
relationship between the outputs of different layers conflicts with the
hierarchical dependency tree, for example, the model predicts the CP
which is not the child node of its other output like Medicare.

prominence for their exceptional performance across various
language-related tasks, including text classification [Kowsari
et al., 2019], and relation extraction [Wang et al., 2023;
Li et al., 2022].The success of PLMs mainly benefits from
large-scale pre-training and sufficient downstream labeled data.
However, when downstream labeled data is scarce, perfor-
mance is greatly compromised, and it is further aggravated
when we try to transfer unstructured prior knowledge in PLMs
to downstream structured tasks like hierarchical text classifica-
tion (HTC) [Mao et al., 2019]. Due to HTC’s broad range of
practical applications [Mao et al., 2019], including product cat-
egorization [Cevahir and Murakami, 2016], fine-grained entity
typing [Xu and Barbosa, 2018] and news classification [Irsan
and Khodra, 2019], HTC has remained a significant research
challenge over time. Despite existing HTC methods, its com-
plex label hierarchy and the need for extensive annotation still
hinder performance in practice. Addressing HTC in few-shot
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scenarios remains an open area of research [Ji et al., 2023].
Currently, the state-of-the-art in HTC [Wang et al., 2022a;

Wang et al., 2022b; Ji et al., 2023] involves incorporating
label hierarchy features into the input or output layer of a text
encoder, using graph encoders or hierarchical verbalizer, as is
illustrated in Figure 1(a). It’s disappointing that they ignore
the adaptation of unstructured prior knowledge to downstream
domain-hierarchy structure and still directly consider HTC
as a multi-label classification problem based on an encoder
with label-hierarchy dependencies injection. Inspired by the
in-context learning approach proposed by GPT-3 [Brown et
al., 2020] and prompt-based methods [Petroni et al., 2019;
Gao et al., 2021; Schick and Schütze, 2021; Li et al., 2023;
Li et al., 2024] that aim to bridge the gap between pre-training
and downstream tasks by utilizing few hard or soft prompts
to stimulate the PLMs’ knowledge, [Wang et al., 2022b;
Ji et al., 2023] are proposed to provide a more systematic
study under low resource or few-shot settings using prompt-
based methods. However, instead of paying more attention
to the inherent difference between downstream hierarchy and
unstructured objective in PLMs, all these methods are just
built from the perspective of how to get a hierarchical label
dependency representation, leading to unstable hierarchical
consistency performance. Similar to mathematical reasoning
tasks [Zhu et al., 2023] for which the answers are often im-
plicit, making it difficult to deal with directly through question-
answer pairs, thus the way to think about the HTC task is really
unfriendly and even antithetical to the language model’s capa-
bilities. Thus the primary difference between these works on
HTC tasks is the way they inject the label hierarchy constraint.

Despite their success, they still suffer from two limita-
tions. On the one hand, previous methods are not well de-
signed to focus on how to decompose and simplify hierarchy-
based problems, on the contrary, they think of HTC in an
even more complex way, and thus they are difficult to handle
the hierarchical inconsistency problem. On the other hand,
considering most of the currently popular large language
models are based on encoder-decoder [Raffel et al., 2020;
Chung et al., 2022] or decoder-only [Brown et al., 2020;
Scao et al., 2022] architectures, previous works are mostly ap-
plicable to the encoder-only architecture, which leads them to
mine rich prior knowledge at a limited model scale in practical
applications. Therefore, few studies have investigated how to
efficiently handle the few-shot domain-hierarchy adaptation
problem. And few studies have tried to develop a simple and
unified framework that can be flexibly deployed in any archi-
tectural model for better practical application performance.

In this work, we design a unified framework named Hi-
erICRF from the perspective of path routing that can be de-
ployed on any transformer-based architecture to fully elicit the
potential of unstructured prior knowledge in PLMs to com-
plete downstream hierarchy tasks. Unlike previous works
that mainly focused on how to align their carefully crafted
representators that incorporate label-hierarchy dependencies
with the sentence semantic space, we use a language model-
ing routing paradigm based on hierarchical iteration to unify
the objectives of the two stages of language modeling in pre-
training and downstream hierarchy-based tasks, which is more
feasible. Technically, as is shown in Figure 1(b), (1) Firstly,

we construct a hierarchy-aware prompt to encourage the model
to generate hierarchically repeated series. (2) Secondly, this
series will be fed into a verbalizer to obtain their masked lan-
guage modeling (MLM) logits of labels in the hierarchical
dependency tree. (3) Finally, we use a hierarchical iterative
CRF and initialize its transition matrix (e.g., transition scores
between non-adjacent layers are set to a minimum to avoid
erroneous cross-layer transfers) based on the hierarchical de-
pendency tree to constrain the hierarchical dependency during
the path routing process. Combining these three stages, with
the deepening of the hierarchically repeated reasoning process,
the model can perform hierarchical consistency self-correction
during each step to encourage predictions more accurate. Dur-
ing the inference stage, we use the Viterbi algorithm [Forney,
1973] to decode the series to obtain our final predictions.

The main contributions of this paper are summarized as:

• To our best knowledge, we are among the first to in-
vestigate a few-shot HTC framework that emphasizes
domain-hierarchy adaptation to bridge the gap between
unstructured prior knowledge and downstream hierarchy.

• We proposed a unified framework that is suitable for any
transformer-based architecture to efficiently mine prior
knowledge within limited downstream labeled datasets
for better few-shot learning.

• We thoroughly study the hierarchical inconsistency prob-
lem. Experiments on BERT and T5 demonstrate that
HierICRF outperforms the previous SOTA few-shot HTC
methods on two popular datasets under extreme few-shot
settings while achieving SOTA hierarchical consistency
performance with an average of 9.3% and 4.38% CMacro-
F1 improvements on WOS and DBpedia, respectively.

2 Related Work
Hierarchical Text Classification. Current HTC research
mainly focuses on how to incorporate hierarchical label knowl-
edge to address imbalanced and large-scale label hierarchy
challenges [Mao et al., 2019]. Various approaches have been
explored, including label-based attention modules [Zhang et
al., 2022], meta-learning [Wu et al., 2019], and reinforce-
ment learning methods [Mao et al., 2019]. [Zhou et al.,
2020] proposes a more holistic approach named HiAGM by
encoding the entire label structure with hierarchy encoders,
which has shown greater performance improvements. Recent
works [Wang et al., 2021; Chen et al., 2021] have also explored
matching learning and concept enrichment to exploit the rela-
tionship between text and label semantics. Later works such as
HGCLR [Wang et al., 2022a] and HPT [Wang et al., 2022b]
have migrated the label hierarchy into text encoding, achiev-
ing excellent performances through prompt tuning methods.
[Ji et al., 2023] proposes a multiple verbalizers framework to
reduce the gap between PLMs and HTC for better few-shot
learning. Despite these advances, how to model HTC tasks
with a unified hierarchy-aware paradigm is still underexplored,
and there is a need to design a solution from the perspective of
the path that performs well on consistency performance within
limited training samples.
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Figure 2: The overview of HierICRF. There are two ways to inject hierarchical constraints: (a) Chain of hierarchy-aware reasoning and (b)
Hierarchical iterative CRF. At stage 3, we select the predictions {y3, y4, y5} (the last path routing iteration) as the final outputs.

3 Methodology
3.1 Problem Statements
This paper mainly focuses on few-shot HTC tasks. Different
from previous works that assume a rich labeled dataset, we
adopt the few-shot setting, i.e., only a limited number of sam-
ples are available for fine-tuning which is more practical as it
assumes minimal resources. We follow the greedy sampling
algorithm proposed in [Ji et al., 2023] to obtain the support
set S from the original HTC datasets, ensuring that each label
path has exactly K-shot samples. Formally, the K-shot HTC
task is defined as follows: given a text x and a K-shot support
set S for the target mandatory-leaf path set CT , the goal is to
predict all golden paths on the label hierarchy tree, where CT
consists of all paths from the root node to the leaf nodes on
the label hierarchy tree H. In our settings, there is only one
correct label for each layer.

3.2 Framework Overview
Figure 2 shows the overall architecture of our proposed HierI-
CRF. Since the label structure that this paper focuses on is a
tree, we view the HTC task as a process of a chain of thoughts
via iterative CRF. Specifically, in the first stage, we construct
a hierarchy-aware reasoning chain Tchain as our prompt to
deepen the process of hierarchy-aware reasoning. During the
second stage, we use Tchain to guide the generator to gen-
erate hierarchically repeated series t, the t will be fed into a
verbalizer to obtain their MLM logits z in the label hierarchy
tree. Finally, during layer-to-layer transfer over the MLM
logits zi of the series ti, we use a hierarchical iterative CRF
(ICRF) to model its path routing by incorporating hierarchical
information into the transition matrix of ICRF.

3.3 Chain of Hierarchy-Aware Reasoning
Due to the complex label dependency in HTC task, it is hard
to adapt flat prior knowledge in PLMs to downstream hierar-
chical tasks. Besides, hierarchical dependency information
between labels at different layers or the same layers may be
implicit. To address the above issues, inspired by the chain

of thought (COT) [Wei et al., 2022] and math [Zhu et al.,
2023] that solve mathematical or planning-related problems
by decomposing complex problems into sub-processes, we
propose a simple but effective method named hierarchy-aware
reasoning chain to elegantly flattens HTC into a hierarchical
loop-based language modeling process, thus allowing it to
fully exploit the capabilities of PLM. The details of obtain-
ing the prompt of the hierarchy-aware reasoning chain named
Tchain are shown in Algorithm 1. For example, when the
depth of the hierarchy tree is 2 and the number of iterations
Tchain is 2, the reasoning chain template Tchain is simply like
”x. It was 1 level: [MASK] 2 level: [MASK] 1 level: [MASK]
2 level: [MASK] 1 level: [MASK]. ”. The Tchain will later
be used to guide the model to generate hierarchically repeated
series.

3.4 Text to Hierarchically Repeated Series
To verify the ability of our method for few-shot domain-
hierarchy adaptation, we implement our method on both BERT
and T5. We first feed the input text x wrapped with template
Tchain into the encoder to obtain the hidden states h1:n:

h1:n = Encoder(Tchain(x)1:n) (1)
where h1:n ∈ Rn×r, and r denotes the hidden state dimension
of encoder and n represents the length of Tchain(x). We then
obtain target hierarchically repeated series t1:l = {ti} through:

t1:l = Generator(h1:n) (2)
For encoder-only LMs: Generator(·) means to directly extract
a subset {hj} consisting of hidden state vectors corresponding
to all [MASK] tokens from h1:n as our t1:l. For encoder-
decoder LMs: Generator(·) represents feeding h1:n into and
prompt its decoder to obtain our final t1:l.

Furthermore, we construct a flat-verbalizer V based on all
labels on the hierarchical tree for label mapping learning. The
verbalizer is represented as a continuous vector WV ∈ Rr×m,
where m signifies the number of labels. The embedding WV

is initialized by averaging the embeddings of its corresponding
label tokens. We feed the series {ti} into the verbalizer to get
the emission probabilities z = {z1, ..., zl}.
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Algorithm 1 Generate hierarchy-aware reasoning chain
Input: number of iterations Ichain, label hierarchyH, depth
of theH called D
Output: hierarchy reasoning chain

1: Tchain ← “It was” //Initialize the prompt
2: for i = 1 to |D| do
3: Tchain = Tchain + “i level: [MASK]”
4: end for
5: for i = D − 1 to 1 do
6: Tchain = Tchain + “i level: [MASK]”
7: end for
8: for = 1 to |Ichain − 1| do
9: for i = D to 1 do

10: Tchain = Tchain + “i level: [MASK]”
11: end for
12: end for
13: return Tchain =0

3.5 Hierarchical Iterative Conditional Random
Fields

After obtaining the label distribution of each step in the
hierarchy-aware reasoning chain, instead of directly classi-
fying, we regard this hierarchically repeated series as a pro-
cess of hierarchical path routing step-by-step. Inspired by
CRF [Sutton et al., 2012] widely used to model the transi-
tion of state space of time series in named entity recogni-
tion [Nadeau and Sekine, 2007], here we model this sequenc-
ing process using hierarchical iterative CRF, injecting hierar-
chical constraint by optimizing transition matrices.

Formally, given a sentence x, we use z = {z1, ..., zl} to repre-
sent a generic series where zi is the emission probability of the
i-th routing step. y = {y1, ..., yn} represents the golden labels
for z. The probabilistic model of a sequence CRF defines a
set of conditional probabilities p(y|z;W, b) over all possible
label sequences y given z as:

p(y|z;W, b) =
∏n

i=1 ψi(yi−1, yi, z)∑
y′∈H

∏n
i=1 ψi(y

′
i−1, y

′
i, z)

(3)

where ψi(y
′, y, z) = exp(WT

y′,yzi + by′,y) are potential func-
tions, and WT

y′,y and by′,y denote the weight and bias corre-
sponding to label pair (y′, y), respectively. The final training
objective is calculated as:

L(W, b) =
∑
i

log p(y|z;W, b) (4)

Additionally, we initialize the transition scores between
non-adjacent layers to a minimum to avoid erroneous cross-
layer transfers. The transition score between Earthquake and
Species in Figure 2 is initialized to 0 before training.

3.6 Decoding
After training, the decoding is to search for the label sequence
y∗ with the maximum conditional probability:

y∗ = argmax p(y|x;W, b); y ∈ H (5)

where we pick out the outputs of the last path routing iteration
from y∗ as our final predictions.

4 Experiments
4.1 Experimental Settings
Datasets and Evaluation Metrics. We evaluate our method
and all baselines on two popular datasets for HTC: Web-of-
Science (WOS) [Kowsari et al., 2017], DBpedia [Sinha et
al., 2018]. WOS is a database that includes abstracts of pub-
lished papers, among other bibliographic information such as
author names, journal titles, and publication dates. DBpedia
is a bigger dataset with labels from Wikipedia meta informa-
tion provider DBpedia with a three-level hierarchy. Table 1
presents the statistical details. There are differences in the
domain distribution of these two datasets.

We measure the experimental results with Macro-F1 and
Micro-F1. To more thoroughly assess the hierarchical con-
sistency, we utilize the path-constrained C-metric proposed
in [Yu et al., 2022] and the path-based P-metric proposed in [Ji
et al., 2023]. The C-metric only considers a correct prediction
for a label node to be valid if all of its ancestor nodes are
predicted correctly. In contrast, the P-metric requires that all
of the ancestors and child nodes on the path to which the label
node belongs are predicted correctly for its correct prediction
to be considered valid.

Baselines. For performance comparison of various mod-
els from a different perspective, we select the following
strong baselines: HiMatch-BERT [Chen et al., 2021], HG-
CLR [Wang et al., 2022a], HPT [Wang et al., 2022b] and
HierVerb [Ji et al., 2023]. We also perform Vanilla Fine-
Tuning (Vanilla FT) [Devlin et al., 2019] and Vanilla Soft
Verbalizer (SoftVerb) [Schick and Schütze, 2021] method on
the Few-shot HTC task. Vanilla FT is a simple method con-
sisting of a Binary CrossEntropy loss for ordinary multi-label
classification followed by a classifier. SoftVerb uses the tradi-
tional template ”x. It was 1:level [MASK] 2:level [MASK].”,
then the hidden states of all positions are fed into the ver-
balizer to obtain label logits. Note that SoftVerb, HPT, and
HierVerb are prompt-based methods and all baselines above
are limited to encoder-only architectures. Considering that the
current research based on encoder-decoder performs poorly
under few-shot scenario, we construct a strong baseline called
SoftVerb-T5 by removing all components on HierICRF-T5 in
the ablation experiment for a fair comparison.

Backbone and Implementation Details. We adopt both
BERT (BERT-base-uncased) [Devlin et al., 2019] and
T5 (T5-base) [Raffel et al., 2020] as the main back-
bone of our experiments, for additional experiments we use
BERT (BERT-base-uncased) by default.

Datasets DBpedia WOS
Level 1 Categories 9 7
Level 2 Categories 70 134
Level 3 Categories 219 NA
Number of documents 381025 46985
Mean document length 106.9 200.7

Table 1: Comparison of popular HTC datasets.
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K Method
WOS(Depth 2) DBpedia(Depth 3)

Micro-F1 Macro-F1 Micro-F1 Macro-F1

1

BERT (Vanilla FT) 2.99 ± 20.85 (5.12) 0.16 ± 0.10 (0.24) 14.43 ± 13.34 (24.27) 0.29 ± 0.01 (0.32)
HiMatch-BERT [Chen et al., 2021] 43.44 ± 8.90 (48.26) 7.71 ± 4.90 (9.32) - -
HGCLR [Wang et al., 2022a] 9.77 ± 11.77 (16.32) 0.59 ± 0.10 (0.63) 15.73 ± 31.07 (25.13) 0.28 ± 0.10 (0.31)
HPT [Wang et al., 2022b] 50.05 ± 6.80 (50.96) 25.69 ± 3.31 (27.76) 72.52 ± 10.20 (73.47) 31.01 ± 2.61 (32.50)
SoftVerb [Schick and Schütze, 2021] 56.11 ± 7.44 (58.13) 41.35 ± 5.62 (44.32) 90.38 ± 0.10 (90.89) 82.72 ± 0.18 (83.74)
HierVerb [Ji et al., 2023] 58.95 ± 6.38 (61.76) 44.96 ± 4.86 (48.19) 91.81 ± 0.07 (91.95) 85.32 ± 0.04 (85.44)
HierICRF-BERT (Ours) 59.40 ± 6.22 (62.01) 46.49 ± 3.91 (49.54) 92.05 ± 0.10 (92.11) 86.10 ± 0.10 (86.78)
HierICRF-T5 (Ours) 59.20 ± 5.17 (61.97) 47.72 ± 2.23 (50.22) 91.94 ± 0.05 (92.01) 86.70 ± 0.05 (86.94)

2

BERT (Vanilla FT) 46.31 ± 0.65 (46.85) 5.11 ± 1.31 (5.51) 87.02 ± 3.89 (88.20) 69.05 ± 26.81 (73.28)
HiMatch-BERT [Chen et al., 2021] 46.41 ± 1.31 (47.23) 18.97 ± 0.65 (21.06) - -
HGCLR [Wang et al., 2022a] 45.11 ± 5.02 (47.56) 5.80 ± 11.63 (9.63) 87.79 ± 0.40 (88.42) 71.46 ± 0.17 (71.78)
HPT [Wang et al., 2022b] 57.45 ± 1.89 (58.99) 35.97 ± 11.89 (39.94) 90.32 ± 0.64 (91.11) 81.12 ± 1.33 (82.42)
SoftVerb [Schick and Schütze, 2021] 62.31 ± 13.24 (65.02) 49.33 ± 6.55 (53.46) 92.97 ± 0.20 (93.04) 87.61 ± 0.20 (87.87)
HierVerb [Ji et al., 2023] 66.08 ± 4.19 (68.01) 54.04 ± 3.24 (56.69) 93.71 ± 0.01 (93.87) 88.96 ± 0.02 (89.02)
HierICRF-BERT (Ours) 65.71 ± 3.69 (67.87) 55.18 ± 3.11 (57.12) 94.22 ± 0.01 (94.22) 89.31 ± 0.01 (89.31)
HierICRF-T5 (Ours) 65.52 ± 2.43 (66.97) 56.11 ± 1.79 (57.49) 93.64 ± 0.01 (94.01) 89.22 ± 0.01 (89.45)

4

BERT (Vanilla FT) 56.00 ± 4.25 (57.18) 31.04 ± 16.65 (33.77) 92.94 ± 0.66 (93.38) 84.63 ± 0.17 (85.47)
HiMatch-BERT [Chen et al., 2021] 57.43 ± 0.01 (57.43) 39.04 ± 0.01 (39.04) - -
HGCLR [Wang et al., 2022a] 56.80 ± 4.24 (57.96) 32.34 ± 15.39 (33.76) 93.14 ± 0.01 (93.22) 84.74 ± 0.11 (85.11)
HPT [Wang et al., 2022b] 65.57 ± 1.69 (67.06) 45.89 ± 9.78 (49.42) 94.34 ± 0.28 (94.83) 90.09 ± 0.87 (91.12)
SoftVerb [Schick and Schütze, 2021] 69.58 ± 3.27 (71.00) 58.53 ± 1.64 (60.18) 94.47 ± 0.10 (94.74) 90.25 ± 0.10 (90.73)
HierVerb [Ji et al., 2023] 72.58 ± 0.83 (73.64) 63.12 ± 1.48 (64.47) 94.75 ± 0.13 (95.13) 90.77 ± 0.33 (91.43)
HierICRF-BERT (Ours) 73.83 ± 0.71 (74.19) 65.40 ± 0.69 (65.86) 95.14 ± 0.15 (95.20) 91.20 ± 0.05 (91.81)
HierICRF-T5 (Ours) 73.22 ± 0.36 (60.11) 65.61 ± 0.54 (66.12) 94.66 ± 0.01 (95.10) 90.89 ± 0.01 (91.33)

8

BERT (Vanilla FT) 66.24 ± 1.96 (67.53) 50.21 ± 5.05 (52.60) 94.39 ± 0.06 (94.57) 87.63 ± 0.28 (87.78)
HiMatch-BERT [Chen et al., 2021] 69.92 ± 0.01 (70.23) 57.47 ± 0.01 (57.78) - -
HGCLR [Wang et al., 2022a] 68.34 ± 0.96 (69.22) 54.41 ± 2.97 (55.99) 94.70 ± 0.05 (94.94) 88.04 ± 0.25 (88.61)
HPT [Wang et al., 2022b] 76.22 ± 0.99 (77.23) 67.20 ± 1.89 (68.63) 95.49 ± 0.01 (95.57) 92.35 ± 0.03 (92.52)
SoftVerb [Schick and Schütze, 2021] 75.99 ± 0.47 (76.77) 66.99 ± 0.27 (67.50) 95.48 ± 0.01 (95.64) 92.06 ± 0.01 (92.37)
HierVerb [Ji et al., 2023] 78.12 ± 0.55 (78.87) 69.98 ± 0.91 (71.04) 95.69 ± 0.01 (95.70) 92.44 ± 0.01 (92.51)
HierICRF-BERT (Ours) 78.54 ± 0.25 (78.69) 70.79 ± 0.38 (71.35) 95.80 ± 0.01 (95.85) 92.77 ± 0.01 (92.82)
HierICRF-T5 (Ours) 77.78 ± 0.17 (78.64) 71.62 ± 0.10 (71.90) 95.55 ± 0.01 (95.70) 92.69 ± 0.01 (92.79)

16

BERT (Vanilla FT) 75.52 ± 0.32 (76.07) 65.85 ± 1.28 (66.96) 95.31 ± 0.01 (95.37) 89.16 ± 0.07 (89.35)
HiMatch-BERT [Chen et al., 2021] 77.67 ± 0.01 (78.24) 68.70 ± 0.01 (69.58) - -
HGCLR [Wang et al., 2022a] 76.93 ± 0.52 (77.46) 67.92 ± 1.21 (68.66) 95.49 ± 0.04 (95.63) 89.41 ± 0.09 (89.71)
HPT [Wang et al., 2022b] 79.85 ± 0.41 (80.58) 72.02 ± 1.40 (73.31) 96.13 ± 0.01 (96.21) 93.34 ± 0.02 (93.45)
SoftVerb [Schick and Schütze, 2021] 79.62 ± 0.85 (80.68) 70.95 ± 0.62 (71.84) 95.94 ± 0.15 (96.18) 92.89 ± 0.20 (93.37)
HierVerb [Ji et al., 2023] 80.93 ± 0.10 (81.26) 73.80 ± 0.12 (74.19) 96.17 ± 0.01 (96.21) 93.28 ± 0.06 (93.49)
HierICRF-BERT (Ours) 81.02 ± 0.10 (81.20) 74.05 ± 0.10 (74.15) 96.22 ± 0.01 (96.25) 93.38 ± 0.02 (93.60)
HierICRF-T5 (Ours) 80.94 ± 0.05 (81.05) 75.23 ± 0.05 (75.88) 96.11 ± 0.01 (95.85) 93.56 ± 0.01 (93.70)

Table 2: Results of 1/2/4/8/16-shot HTC. F1 scores on WOS and DBpedia. We report the mean F1 scores (%) over 3 random seeds. Bold: best
results. Underlined: second highest. For baseline models, we report the F1 scores from their original paper.

The batch size is 8. We use a learning rate of 5e-5 for
BERT and 3e-5 for T5 and train the model for 20 epochs. For
soft verbalizer and ICRF, we use a learning rate of 1e-4 to
encourage a faster convergence. After each epoch, we evaluate
the model’s performance on the development set and set early
stopping to 5 as usual. For the baseline models, we follow the
hyperparameter set as specified in their respective papers.

4.2 Main Results
Main experimental results are reported in Table 2. By optimiz-
ing from a path routing perspective, HierICRF outperforms
overall comparison baselines under most situations.

We first find out that prompt-based methods outperform
vanilla FT by a dramatic margin in the case of no more than
4-shot settings. On average, 67.01%, 13.30%, and 10.01%

Micro-F1 improvements are achieved by HierICRF-BERT
compared to the vanilla FT. However, although HPT is de-
signed as a prompt-based method, its few-shot results are not
satisfactory. The reason is obvious since the overfitting prob-
lem of the GNN layers becomes serious when labeled data
used for fine-tuning is limited.

Second, HierICRF-BERT achieves 1.53%, 1.14%, and
2.28% Macro-F1 improvements from the best baselines on 1, 2,
and 4-shot on WOS, respectively. Besides, HierICRF-T5 has a
substantial improvement with an average Macro-F1 of 2.08%
on WOS and 0.46% on DBpedia compared to the previous
SOTA HierVerb while keeping competitive with HierICRF-
BERT on Micro-F1.

Additionally, it is clear that both the HierICRF-BERT and
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K Method
WOS DBpedia

PMicro-F1 PMacro-F1 CMicro-F1 CMacro-F1 PMicro-F1 PMacro-F1 CMicro-F1 CMacro-F1

1

HierICRF-BERT 42.63 41.62 57.35 44.06 84.95 79.44 90.52 84.42
HierVerb 39.77 37.24 55.18 39.42 83.56 77.96 89.80 81.78
HPT 19.97 17.47 49.10 22.92 61.08 57.80 82.84 66.99
HGCLR 0.0 0.0 2.21 0.09 0.0 0.0 28.05 0.24
Vanilla FT 0.0 0.0 0.96 0.04 0.0 0.0 28.08 0.24

2

HierICRF 52.62 49.39 64.07 52.64 90.14 87.66 94.54 90.26
HierVerb 50.15 47.98 62.90 49.67 88.58 86.35 93.61 88.96
HPT 28.27 26.51 56.64 33.50 82.36 81.41 92.31 86.43
HGCLR 1.39 1.49 45.01 4.88 54.55 3.72 67.70 26.41
Vanilla FT 1.43 1.42 45.75 4.95 53.83 3.71 67.72 26.89

4

HierICRF 63.91 60.17 73.45 62.88 93.20 92.51 95.88 93.31
HierVerb 62.16 59.70 72.41 61.19 91.90 91.38 95.74 92.87
HPT 50.96 48.76 69.43 55.27 87.61 87.04 94.50 90.42
HGCLR 29.94 27.70 57.43 34.03 55.34 3.76 67.54 28.60
Vanilla FT 22.97 20.73 55.10 27.50 55.15 3.74 67.44 28.32

Table 3: Consistency experiments on the WOS and DBpedia datasets using two path-constraint metrics. PMicro-F1 and PMacro-F1 are our
proposed path-based consistency evaluation P-metric. We report the mean F1 scores (%) over 3 random seeds. All experiments use their
respective metrics as a signal for early stopping.

K Ablation Models
BERT T5

Micro-F1 Macro-F1 Micro-F1 Macro-F1

1
Ours 59.40 46.49 59.20 47.72
r.m. ICRF loss 57.54 43.25 57.82 45.77
r.m. CHR 57.82 43.71 56.88 44.25
r.m. ICRF&CHR 56.11 41.35 57.16 44.83

2
Ours 65.71 55.18 65.52 56.11
r.m. ICRF loss 64.11 52.05 64.29 53.47
r.m. CHR 64.52 52.39 64.73 54.82
r.m. ICRF&CHR 62.31 49.33 62.07 49.67

4
Ours 73.83 65.40 73.22 65.61
r.m. ICRF loss 71.78 63.99 71.21 63.48
r.m. CHR 71.51 63.29 72.52 64.15
r.m. ICRF&CHR 69.58 58.83 70.24 59.75

8
Ours 78.54 70.79 77.78 71.62
r.m. ICRF loss 76.44 68.23 76.52 69.30
r.m. CHR 77.29 69.60 77.63 70.44
r.m. ICRF&CHR 75.99 66.99 75.24 67.11

16
Ours 81.02 74.05 80.94 75.23
r.m. ICRF loss 80.04 72.71 80.15 72.41
r.m. CHR 80.54 73.64 80.46 73.84
r.m. ICRF&CHR 79.62 70.95 78.91 71.74

Table 4: Ablation experiments on WOS. r.m. stands for remove. We
report the mean F1 scores (%) over 3 random seeds. ICRF stands for
Hierarchical Iterative CRF while CHR stands for Chain of Hierarchy-
aware Reasoning. Note when all mechanisms are removed, HierICRF
is equivalent to Vanilla SoftVerb.

HierICRF-T5’s Micro-F1 and Macro-F1 change very slightly
from 1 to 16 shots on DBpedia while other models except
HierVerb are particularly dependent on the increase of labeled
training samples. For example, as the shots become fewer, the
HierICRF-BERT’s Micro-F1 changes from 96.22% to 92.05%
while HGCLR’s Micro-F1 changes from 95.49% to 15.73%.
The results indicate that our method can efficiently mine the
prior knowledge in pre-training for hierarchical tasks in the
case of extremely few samples instead of relying too much on
limited training samples to optimize the model.

4.3 Hierarchical Consistency Performance
Table 3 further studies the consistency performance. Our
method still maintains SOTA consistency performance in the
absence of labeled training corpora. It is clear that HGCLR
and BERT (Vanilla FT) which uses the direct fitting method
only achieve 0 points in PMicro-F1 and PMacro-F1 under the
1-shot setting. Compared with the best-performing baseline
HierVerb, on average, HierICRF-BERT outperforms 7.08%
and 4.25% PMicro-F1 scores, and 6.26% and 3.92% PMacro-
F1, and 4.38% and 1.79% CMicro-F1, and 9.3% and 4.38%
CMacro-F1 scores on WOS, DBpedia, respectively. As for
HPT and HierVerb, directly extra embedding injection to the
pre-trained LM pays less attention to the hierarchy consis-
tency. The results highlight that the proposed paradigm allows
model to optimize from a path routing perspective, more con-
sideration is given to the label dependency during the process
of iteratively transiting between layers on the hierarchically
repeated series to better deal with the hierarchical inconsis-
tency problem. Surprisingly, when more training data are
given, the performance gap between HierICRF and all other
baselines gradually decreases as we may hypothesize. We
conjecture that it is because although all baseline methods lack
domain-hierarchy adaptation in the paradigm, data-hungry
based methods such as GNN can still learn hierarchical con-
sistency dependency through directly overfitting, thereby grad-
ually improving consistency performance.

4.4 Ablation Experiments
To illustrate the effect of our proposed mechanisms, we con-
duct ablation studies on WOS, as shown in Table 4. When
both ICRF and CHR are removed, HierICRF is equivalent to
Vanilla SoftVerb. Removing ICRF results in significant perfor-
mance degradation, with an average of 1.72% Micro-F1 and
2.38% Macro-F1 on BERT and 1.72% Micro-F1 and 2.37%
Macro-F1 on T5, meaning that ICRF plays an important role
in incorporating hierarchy dependencies. Furthermore, the
performance decreases even more when both ICRF and CHR
are removed, e.g., in the 4-shot case, Macro-F1 even drops
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WOS
Methods Micro-F1 Macro-F1

HierICRF 87.12 81.65
HierVerb 87.00 81.57
HPT 87.10 81.44
SoftVerb 86.80 81.23
HGCLR 87.08 81.11
HiMatch-BERT 86.70 81.06
BERT (Vanilla FT) 85.63 79.07

Table 5: Full-shot experiments using BERT-base-uncased on
WOS dataest .

WOS DBpedia
Ichain Micro-F1 Macro-F1 Micro-F1 Macro-F1

5 73.83 65.40 95.14 91.20
3 72.86 65.01 95.05 91.11
1 72.16 64.55 94.74 90.51
0 72.01 64.29 94.60 90.37

Table 6: Effect of Hierarchy-aware Chain’s Length. Here we conduct
experiments under 4-shot settings.

by 6.57% compared to the full method deployed on BERT.
This firmly highlights the significance of combining chain
of hierarchy-aware reasoning and hierarchical iterative CRF
allows HierICRF to gradually inject label hierarchy informa-
tion by feeding back the accumulated error transition of label
nodes in the process of path routing step-by-step.

4.5 Benefit in a Full-Shot Setup
We conduct experiments using a full-shot setting and use the
hyperparameter set directly from the few-shot settings. For the
baseline models, we reproduce their experiments based on the
settings in their original paper. While the main focus of our
work is on the performance under few-shot settings, it is worth
noting that HierICRF surprisingly outperforms all baselines,
such as HGCLR, HPT, and HierVerb, in the full-shot setting.
As shown in Table 5, our Micro-F1 is slightly higher than HG-
CLR, HPT, and HierVerb, while Macro-F1 significantly beats
them by 0.28% on average. Besides, HierICRF significantly
outperforms BERT (Vanilla FT), HiMatch, and SoftVerb.

4.6 Effect of Reasoning Chain’s Length
To further study the effects of the hierarchy-aware reasoning
chain, we conduct experiments on the iteration length of the
reasoning chain. As we can see in Table 6, the performances
on both WOS and DBpedia degrade substantially as Ichain
decreases, with an average Micro-F1 of 1.82% and 0.54%
on WOS and DBpedia. The results show that our method
can correct more hierarchical inconsistencies between time
steps and feedback to model optimization when performing
hierarchical transitions in longer hierarchically repeated series.

4.7 Effect of Model Scales
To further study the ability of HierICRF to utilize
the prior knowledge of the PLMs, we conduct experi-
ments on BERT-large-uncased and T5-large. Ta-
ble 7 demonstrates that HierICRF consistently outper-
forms all baseline models in all shot settings. We

K Method
WOS

Micro-F1 Macro-F1

1
HierICRF-T5 62.39 51.13
HierICRF-BERT 62.10 49.51
HierVerb 61.29 47.70
HPT 49.75 19.78
HGCLR 20.10 0.50
BERT (Vanilla FT) 10.78 0.25

2
HierICRF-T5 68.40 60.05
HierICRF-BERT 68.14 58.81
HierVerb 67.92 56.92
HPT 60.09 35.44
HGCLR 44.92 3.23
BERT (Vanilla FT) 20.50 0.34

4
HierICRF-T5 74.94 68.27
HierICRF-BERT 75.22 67.81
HierVerb 73.88 64.80
HPT 69.47 53.22
HGCLR 68.12 52.92
BERT (Vanilla FT) 67.44 51.66

Table 7: We further conduct experiments with the T5-large and
BERT-large-uncased on WOS.

find that the gap is even significantly larger for Hi-
erICRF and all other baseline models compared to us-
ing BERT-base-uncased. For example, compared
with HierVerb, HierICRF-BERT(BERT-large-uncased)
achieves a 1.53% Macro-F1 and a 0.45% Micro-F1 scores
increase under 1-shot setting. But the improvements
of Macro-F1 and Micro-F1 are 1.81% and 0.81% under
BERT-base-uncased, respectively. Surprisingly, when
using T5-large, we find that its performance improve-
ment relative to T5-base is greater than that of the im-
provement obtained by all all BERT-based methods (in-
cluding HierICRF-BERT) from BERT-base-uncased to
BERT-large-uncased, and even achieve SOTA under no
more than 2-shot settings. The findings further underscore that
HierICRF outperforms all baseline models in effectively lever-
aging the prior knowledge embedded within larger language
models. This advantage becomes even more pronounced as
the scale of the language model increases, highlighting the sig-
nificant impact of HierICRF’s ability to harness this expansive
prior knowledge.

5 Conclusions
In this paper, we study the challenge of domain-hierarchy
adaptation. We propose a novel framework named HierICRF
which elegantly leverages the prior knowledge of PLMs from
the perspective of the path routing performed at the language
modeling process for better few-shot domain-hierarchy adap-
tation and can be flexibly applied in any transformer-based
architecture. We perform few-shot settings on HTC tasks and
extensive experiments show that our method achieves state-of-
the-art performances on 2 popular HTC datasets while guar-
anteeing excellent consistency performance. Moreover, our
method provides a perspective for hierarchy-based tasks to
integrate into a unified instruction tuning paradigm for pre-
training. For future work, we decide to extend HierICRF for
effective non-tuning algorithms of LLM.
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