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Abstract
Named entity recognition (NER) aims to locate
and classify named entities in natural language
texts. Most existing high-performance NER mod-
els employ a supervised paradigm, which requires
a large quantity of high-quality annotated data dur-
ing training. In order to help NER models per-
form well in few-shot scenarios, data augmentation
approaches attempt to build extra data by means
of random editing or by using end-to-end genera-
tion with PLMs. However, these methods focus on
only the fluency of generated sentences, ignoring
the syntactic correlation between the new and raw
sentences. Such uncorrelation also brings low di-
versity and inconsistent labeling of synthetic sam-
ples. To fill this gap, we present SAINT (Syntactic-
Aware InsertioN Transformer), a hard-constraint
controlled text generation model that incorporates
syntactic information. The proposed method oper-
ates by inserting new tokens between existing en-
tities in a parallel manner. During insertion pro-
cedure, new tokens will be added taking both se-
mantic and syntactic factors into account. Hence
the resulting sentence can retain the syntactic cor-
rectness with respect to the raw data. Experimental
results on two benchmark datasets, i.e., Ontonotes
and Wikiann, demonstrate the comparable perfor-
mance of SAINT over the state-of-the-art baselines.

1 Introduction
Named entity recognition (NER), as an important fundamen-
tal technique in information extraction, is of great signifi-
cance to many downstream tasks such as text summariza-
tion [Nallapati et al., 2016] and information retrieval [Baner-
jee et al., 2019]. Methods utilizing pre-trained language mod-
els (PLMs) have achieved outstanding performance [Peters
et al., 2017; Souza et al., 2020]. However, such techniques
primarily follow a supervised paradigm, and high perfor-
mance primarily hinges on the size and quality of the training
data. Actually, the major challenge of this technique lies in
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Figure 1: An illustration of the editing and generative methods,
where different colors denote different entity types and the dotted
boxes represent the location of errors.

the manual annotation of the corpus, which requires domain
knowledge and is time-consuming, ending in the absence of
annotated data over various verticals.

Several methods have been proposed to alleviate the above
challenge, such as meta-learning [Wu et al., 2020; de Lichy
et al., 2021; Ma et al., 2022c], prompt learning [Ma et al.,
2022b; Liu et al., 2022a; Chen et al., 2022], and data augmen-
tation [KERAGHEL et al., 2020; Phan and Nguyen, 2022].
Among these, explicit data augmentation could be easily
and seamlessly plugged into other few-shot NER approaches.
Generally, the primary technical methods of NER data aug-
mentation research can be grouped into two paradigms: edit-
ing [Zhang et al., 2015; Cai et al., 2020; Wei and Zou, 2019;
Min et al., 2020] and generative [Sun and He, 2020; Yoo et
al., 2019; Yu et al., 2018; Zhou et al., 2022] methods. Edit-
ing techniques create new data by modifying the raw text with
word substitution [Zhang et al., 2015; Cai et al., 2020], ran-
dom deletion [Wei and Zou, 2019], and order exchange [Min
et al., 2020]. In this vein, the editing method might raise
issues such as the diversity deficiency of synthetic samples,
thus reducing the generalization power of NER models. For
example, in the second case of Figure 1, when Jobs and Ap-
ple were substituted with Leo and Google respectively, the
revised sentence was basically unchanged with the same con-
text as the raw sentence.

In comparison with editing methods, the generative meth-
ods can generate samples with higher fluency and variety e.g.,
GANs [Sun and He, 2020], VAEs [Yoo et al., 2019], transla-
tion [Yu et al., 2018] and prompt learning models [Wang et

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5104



al., 2022; Liu et al., 2022b]. Nevertheless, the performance
of existing generative methods may suffer from two disad-
vantages.On the one hand, compared with the raw sentence,
the resulting sequence may cause syntactic deviation. As a
result, the boundary of the generated entity may change, and
the original entity label may not correspond correctly to the
generated entity. Consider the second case in Figure 1, where
the entity Apple was incorrectly expanded into another en-
tity words the Washington Apple Association with a wider
entity boundary. On the other hand, the generative method
with a prompt learning strategy encourages the assembly of
entities to guide sentence generation but lacks specific hard
constraints to ensure entity occurrence. However, we are un-
able to obtain the ground truth labels of the newly generated
token in advance. As shown in the previous example, the en-
tity Jobs was dismissed during generation and replaced by a
non-entity word He.

To address these issues, we argue that the key of the NER
data augmentation task lies in preserving the semantic di-
versity and syntactic consistency between created sentences
and raw ones. In this paper, we propose SAINT (Syntactic-
Aware InsertioN Transformer), a hard-constrained controlled
text generative model that explicitly incorporates the syn-
tactic feature into pre-trained language models (PLMs) and
restricts the appearance of predefined entities in the gener-
ated sentence. In contrast to previous generative approaches,
SAINT generates sentences while maintaining semantic di-
versity and syntactic relevance with respect to the raw data.
Specifically, we first turn the raw sentence into a dependency
tree and obtain its flattened form containing the dependency
direction and distance. Inspired by a hard constraint text gen-
eration work [Zhang et al., 2020], the training dataset is con-
structed by randomly picking and masking key tokens and
corresponding syntactic annotations in raw sentences. The
processed outputs are then fed into SAINT with the flat-
tened dependency structures and the token themselves as the
supervised objectives for multi-task training. In the infer-
ence stage, we feed the predefined entities and keywords into
SAINT, generating the context words and corresponding syn-
tactic annotations incrementally. The final training sentence
can be selected using a sophisticated dependency similarity
comparison algorithm.

Experimental results on two benchmark datasets from
Wikiann [Pan et al., 2017] and OntoNotes [Hovy et al.,
2006] demonstrate the superior performance of our model
over state-of-the-art NER data augmentation baselines, with
improvements of 2.21% and 3.13% over the strongest base-
line model in the best case, respectively. The effectiveness of
introducing syntactic features for the low-resource NER data
augmentation task is also verified. Moreover, further analysis
reveals the ability of SAINT to retain the dependency con-
sistency of the raw sentence through the sample generation
process. To sum up, the major contributions of this paper are
three-folds:

• We argue that ensuring semantic diversity and syntactic
consistency with the raw data is crucial for NER data
augmentation. Based on this consideration, we construct
the training dataset with both tokens and corresponding
syntactic labels under the few shot settings.

• We propose a novel NER data augmentation model,
SAINT, which explicitly incorporates syntactic features
into the insertion transformer to generate samples con-
taining preset entities parallelly.

• Extensive experiments are conducted on the Wikiann
and OntoNotes datasets to verify the effectiveness of our
method and demonstrate the significance of introducing
syntactic features.

2 Method
Given a sentence xi from the downstream NER corpus
X = {x0, x1, ..., xn}, the ultimate goal of SAINT is to
produce a set of new sentences yi =

{
y0i , y

1
i , ..., y

m
i

}
for

each input xi, where n denotes the size of original corpus,
and m is the number of generation scale. The generative data
yi should be grammatically correct and semantically consis-
tent with the raw sentence xi. The total of yi (0 ≤ i ≤ n)
together makes up the generated dataset Y = {y0, y1, ..., yn}
that is further used in augmentation.

The overall architecture of SAINT is shown in Figure 2. In
the first stage, SAINT constructs the training samples si for
each data xi by utilizing the flattened form of the dependency
tree for label syntactic features and picking and masking
tokens dynamically. In the second stage, the syntactic
feature is injected into the pre-trained language model, and
the hard constraint text generation paradigm restricts the
appearance of predefined entities in the generated sentence.
The multi-task learning method could supervise the model
to predict tokens and corresponding dependency labels. In
the last stage, SAINT incrementally generates the sentence
in a token-by-token manner. Moreover, the syntactic simi-
larity measurement helps select the most syntactic-relevant
sentence as the final result.

2.1 Training Sample Creation
The first stage of our method is to create samples for train-
ing. Due to the difficulty of directly constructing a step-
wise mask loss function, the model is trained with data in-
stance pairs. The training data is organized into a sequence
of (rawtoken, rawsyntax, predicttoken, predictsyntax) pairs
after progressive masking. Specifically, for each sample in
the raw dataset, its syntactic dependency labels can be ob-
tained by syntactic feature labeling, and tokens are masked
from stage k to stage k+1 according to the importance score
by the token selector. Consequencely, every interval pair
(ski , sk+1

i ) comprises the training data. For example, sam-
ple {(studies, Park, College), (-0obj,+0compound,-0nmod)}
and sample {(continued, studies, Park, College), (-0ROOT,-
0obj,+0compound,-0nmod)} form a data pair, as illustrated in
Figure 2.

Syntactic Feature Labeling
As a syntactic dependency contains the information of the
direction, distance, and relation type, we define syntactic de-
pendency labels as follows:

(+|−)(ℓ)(dep) (1)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5105



Stage 1: Dataset Creation

D
yn

a
m

ic D
a

ta

C
o

n
stru

ctio
n

Stage 2: Syntactic-aware Insertion 

Transformer Training

She continued her studies at Park College .

She continued her studies at Park College .

She continued her studies at Park College .

Syntax Information Labeling

Syntax Information Injection 

Multi-task Learning

studies  Park  College -2obj  +1compound -3nmod

...

+

Task 1: Token Insertion Task 2: Token Syntax 

 Prediction

DWA Weight
Language 

T
o

k
en

S
electo

r

She continued her studies at Park College .

She continued her studies at Park College .

She continued her studies at Park College .

She continued her studies at Park College .

pair 1

pair 2

pair 3

Incremental Generation

Post-Processing

Input studies
O Organization

obl

Park College

his studies from Park College

his studies fromtheological

his studies from Park Collegetheologicalof are

studies

started

of College

nsubj

obj
nmod

case

obj

travels

studies
nsubjconj

xcomp

Training Data

studies, Park, College

continued, studies, Park, College

-1ROOT, -2obj, +1compound, -3nmod

pair 1

-2obj, +1compound, -3nmod

:

:
:

:

Raw Data 

 She continued her studies at Park College .

Stage 3: Data Generation 

Syntactic-aware Insertion Transformer

Syntactic-aware Insertion Transformer

Syntactic-aware Insertion Transformer

Park College

he

theological english he

Park

Model Loss Dependency Loss
Syntactic 

Injected 

Embedding

Syntax Embedding Word Embedding

nsubj

her College

punct

nmod:poss
She studies

continued
obj

nmod
.

his studies from Park Collegetheologicalof are

Figure 2: Overview of SAINT’s workflow with respect to the sentence She continued her studies at Park College.

where (+|−), ℓ, and dep denote such three parts respectively.
(+|−) designates the direction between the head and the de-
pendent, where + denotes the position of the head in the sen-
tence as coming before the dependent, and - is the opposite. ℓ
indicates the distance between two tokens. Due to the exten-
sive range of distance, it may result in a large number of la-
bels. To avoid the label sparsity problem in the low-resource
scenarios, we further process the value of distance to ℓ. We
assign the value of ℓ to 0 when the distance is less than 5, and
to 1 when the distance is equal to or greater than 5. dep shows
the dependency relation type that the head belongs to.

To get the defined syntactic labels, we first apply the Stan-
ford Parser1 to obtain the syntactic dependencies of each sam-
ple. For the triplets (tail, type, head) in syntactic dependen-
cies, we use the absolute value of relation head to relation tail
as the distance and connect them to form the relation labels.
For the case where a word corresponds to multiple labels, we
only retain the labels of the predefined important syntactic
component. Secondly, the formed label is then matched to
the original word segmentation result to form syntactic de-
pendency labels. Finally, we can obtain the syntactic depen-
dency labels with respect to each sample. As shown in Fig-
ure 2, under the above process, the sample {She continued
her studies ...} can be reflect to its corresponding syntactic
label {+0nsubj, -0ROOT, +0nmod:pass, -0obj ...}.

Token Selector
To assess the significance of the tokens in the sentence, we
consider the four different token scoring schemes. The score
indicates the importance of tokens for different stage masks.
Concretely, the importance score of the token xi in stage Xk

is defined as:

pi = ptf−idf
i + pposi + pyakei + pdepi (2)

where ptf−idf
i , pposi , pyakei , and pdepi represent the scores of

TF-IDF, POS tagging, YAKE [Campos et al., 2020], and syn-
1https://stanfordnlp.github.io/CoreNLP/

tactic feature, respectively, and each item is adjusted to range
0 to 1. We increase the score of important syntactic compo-
nents to highlight their contribution and keep the scores of
other syntactic components unchanged. Throughout the con-
struction of the dataset, the less important tokens are selected
at an earlier stage, and then feed into the dynamic data con-
struction module to determine whether to mask.

Dynamic Data Construction
Since SAINT does not insert multiple tokens between two ad-
jacent tokens under the step-by-step data generation process,
there should be no continuous masking of two tokens during
the construction of training data. Based on such considera-
tion, we calculate pi of each token in each step and choose
a set of tokens with the highest total score. Formally, this
problem can be defined as:

max
L∑
i

αi(pmax − pi)

s.t. αiαi+1 ̸= 1 ∀i
(3)

Suppose the current sequence is ski = {w0, w1, · · ·, wn},
where αi denotes whether wi is masked or not. αi ∈ {0, 1},
αi = 0 signifies keeping the corresponding token wi, while
αi = 1 implies masking wi. pmax = max{pi}. Using pmax

to subtract the score of each token to ensure that all the scores
calculated by the algorithm are positive. Then we can conduct
a dynamic programming [Gries, 1982; Zhang et al., 2020] to
select tokens that should be masked.

2.2 Syntactic-aware Insertion Transformer
Training

In this section, we introduce the training process of syntactic-
aware insertion transformer using the training dataset
obtained in the previous phrase. Specifically, rawtoken is
fed into the model, while syntactic feature rawsyntax is also
injected simultaneously. Moreover, the model is supervised
to predict token predicttoken and corresponding dependency
labels predictsyntax.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5106

https://stanfordnlp.github.io/CoreNLP/


Syntactic Feature Injection
In the training stage, we combine both embeddings of the
syntactic dependency labels rawsyntax and word rawtoken.
As shown in Equation (4) :

ei = λse
word
i + (1− λs)e

syntax
i (4)

where eword
i ∈ Rdw and esyntaxi ∈ Rdw are low-dimensional

and dense vectors initialized by word embedding and syntax
embedding, respectively. ei ∈ Rdw serves as the represen-
tation of token wi. dw = 768 denotes the dimension of the
word vector. λs is a hyper parameter manually specified to
balance the weight of syntax and semantic.

Multi-task Learning
Given all the input sample pairs (ski , s

k+1
i ) for the kth pair of

ith sample, Our training process consists of two tasks: pre-
trained language model fine-tuning and syntactic dependency
label prediction. The first item refers to calculating the loss
of the language model Lℓm as:

Lℓm = − log p(sk+1
i |ski ) (5)

Moreover, Ldep indicates the cross-entropy loss towards
the syntactic dependency labels, which can be calculated by
Equation (6) :

Ldep = −
∑
vi∈V

vi log ṽi (6)

where vi and ṽi denote the ground truth and predicted
syntactic dependency labels, respectively.

In the training phase, teacher-forcing and multi-task
learning strategies are employed. And the Dynamic Weight
Averaging (DWA) [Liu et al., 2019] is utilized to dynami-
cally balance the two tasks and obtain weights of the PLM
fine-tuning task and the syntactic dependency prediction
task as λℓm and λdep. In summary, the total loss of the
syntactic-aware insertion transformer can be computed as:

L = λℓm · Lℓm + λdep · Ldep (7)

where λℓm and λdep are both in the range 0 to 1, which are
allocated automatically by DWA mechanism.

2.3 Data Generation
The data generation process started with the given keyword
sequence rawtoken, and the trained SAINT is used to gen-
erate candidate insertion words incrementally. In addition,
with a large amount of generated data, we use Bayesian risk
minimization to select the sample that has similar syntactic
features to the raw sentence.

Incremental Generation
Since each step of the generation process generates tokens si-
multaneously, tokens inserted into different slots may be un-
aware of others, resulting in inconsistent expressions or du-
plicate content. We employ a beam search algorithm with
Minimum Bayes Risk (MBR) [Kumar and Byrne, 2004] to
select label sequence alternatives at each time step, limiting
the number of alternatives to the beam width B.

Suppose the existing token sequence as sk =
{sk1, sk2, · · ·, sklk} and the sequence length as lk. By ex-
ecuting an insertion procedure, it will predict the top
B candidate tags in each slot, and the generated can-
didate sequence is Ck = {c(b)1 , c

(b)
2 , · · ·, c(b)i }, where

c
(b)
j , j ⊂ {1, · · ·, i}, b ⊂ {1, · · ·, B} is one of the top B can-

didate tokens in the current jth slot. During the insertion of
candidate words in the next slot, the model generates the most
likely top B candidate token sequences. By iteratively exe-
cuting the above steps, the top B generated sequences with
the largest likelihood are reserved as the final candidate set S.

Dependency Similarity Comparison
For the top B generated candidate sentences, some of the
generated syntactic labels may not align with the actual la-
bels. We argue that generated sentences can be more in
line with raw data when the generated syntactic labels are
highly consistent with the real ones. To this end, we per-
form a dependency similarity comparison method, and se-
lect the most syntactic-relevant result. Particularly, for each
sentence si in the candidate set S, the generated syntac-
tic label sequence is gsi = {ge1, ge2, · · ·, geim}, the ac-
tual syntactic label sequence obtained by the Stanford Parser
is asi = {ae1, ae2, · · ·, aeim}. The dependency similarity
score of sentence si can be obtained as:

scorei =
1

M

M∑
m=1

sim (geim, aeim) (8)

where the function sim( geim, aeim ) denotes to calculate the
similarity between geim and aeim with fuzzy comparison.
scorei = 1 if the syntactic distance between labels is less
than 2 and they have the same dependency relation type, and
scorei = 0 otherwise. Finally, we select the sentence sbest
with the highest dependency similarity score in the candidate
set S as the final generation result.

3 Experiments
In this section, we introduce the experimental settings and
baseline methods and report the results of the experiments.

3.1 Datasets and Experimental Settings
We conduct experiments on the two NER datasets of
Wikiann [Pan et al., 2017] and OntoNotes [Hovy et al., 2006].
The Wikiann dataset includes three types of entities: location,
organization, and person. The OntoNotes dataset contains 18
types of entities, e.g., cardinal, date, event, law, and language.
In the experiment, we sampled 100, 200, 300, 400, and 500
items of data as training data under low resource constraints.

Our method is implemented with Python 3.7.12, PyTorch
1.8.0, and the NVIDIA Tesla V100 16G platform. In the
experiment, SAINT utilized the Bert-base model as the pre-
trained language model and adopted the AdamW optimizer
with a learning rate of 1e-5. The training batch size is 20,
and the model is trained for 5 epochs. The inference pro-
cess is performed in three steps. The parameter λs is adjusted
to 0.2. The NER model’s optimizer in the experiment is the
AdamW optimizer, the learning rate is 2e-5, and the batch
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size is 8. The model with the best validation set performance
in 20 epochs is chosen as the final model for testing.

In order to fairly evaluate the performance of each method,
we use the XML-RoBERTa-Large [Conneau et al., 2020]
with CRF [Lample et al., 2016] as the unified NER model.
Moreover, we test three times and metric the average Micro-
F1 value as the final result.

3.2 Baselines
We choose seven representative editing and generative NER
data augmentation approaches as baselines for comparison.

Editing Methods
Label-wise token replacement (LwTR) leverages the bino-
mial distribution to replace tokens with the same label in the
training set. Synonym replacement (SR) uses the same to-
ken selection process as LwTR and replaces the token with
its synonyms from WordNet. Mention replacement (MR)
replaces entities by sampling the entities with the same labels
in the training set. Shuffle within segments (SiS) cuts the
sentence into several segments and replaces the segment with
the same label.

Generative Methods
DAGA [Ding et al., 2020] formulates data augmentation
as the sequence tagging task, where the labeled sentences
are first linearized. A language model (LM) is then fine-
tuned using such linearized data to generate synthetic sam-
ples. MulDA [Liu et al., 2021] extends [Ding et al., 2020] to
low-resource cross-lingual NER, and introduces the process
of filtering out the low-quality data. PromDA [Wang et al.,
2022] first trains the soft prompt using the frozen PLM, then
generates synthetic data by deleting useless samples with the
help of NLU models.

3.3 Main Results
The experimental results on the two datasets are shown in
Table 1, where no augmentation implies merely splicing all
preset entities together without any other operations.

First, the editing method can typically outperform the
non-augmentation manner, with the F1 value of SiS on the
200-sample Wikiann dataset achieving an absolute gain of
4.83%. Furthermore, as the number of samples rises, the
performance improvement of these methods gradually slows
down. Notably, MR is inferior to no augmentation under
the 300, 400, and 500 sample settings on Wikiann. This
disadvantage might be due to the low diversity of contexts
within the samples obtained through a straightforward
replacement operation.

Secondly, comparing the generative and editing methods
reveals that the former maintains an absolute lead. An
obvious observation is that regarding the 500 samples in
the OntoNotes dataset, DAGA, MulDA, PromDA, and our
method SAINT increase the F1 value by 9.21%, 10.49%,
12.39% and 14.58% over the best editing method SR, respec-
tively. Besides, PromDA employs the natural language gen-
eration (NLG) technique rather than natural language under-
standing (NLU), achieving promising results on both datasets
thanks to the prompt learning strategy.

Finally, our approach SAINT performs better than the other
baseline models in most cases. Regarding the 500 samples
of the OntoNote dataset, our approach outperforms no aug-
mentation and PromDA in terms of F1 values by 17.98%
and 2.19%, respectively. Regarding the 500 samples of the
Wikiann dataset, such improvements are 14.23% and 3.13%.
Even though SAINT is slightly inferior to PromDA on 100
and 200 samples of the OntoNote dataset, comparable results
are also achieved. Note that our method can be better adapted
to generate more new samples. On the one hand, it demon-
strates the strong generalization ability of our method. On the
other hand, such abilities can help resolve complicated low-
resource scenarios in reality.

3.4 Ablation Study
The motivation for our approach is to preserve the semantics
within the raw sample while ensuring the label correctness
of the generated data with the help of syntactic features. To
verify the effectiveness of our method, we conduct ablation
experiments and show the results in Table 2.

As can be seen, the performance of SAINT on both data
sets is severely affected by the removal of the syntactic injec-
tion module, with the maximum decline of 3.99% and 4.26%,
respectively. Further observation reveals that, with respect to
the multi-task learning scheme, the F1 score of SAINT de-
creases maximally by 2.97% and 4.34% when omitting the
language model loss and syntactic loss, respectively. By con-
trast, the syntactic loss serves as a more significant effect on
model performance. Incidentally, analyzing the difference in
results between the two datasets, the removal operations ap-
pear to have a greater impact on Wikiann than OntoNotes.
The major reason is that sentences of Wikiann are more con-
cise and grammatically correct, encouraging syntactic consis-
tency is more critical.

3.5 Effect of Hyper Parameters
In this section, we conduct experiments with different hyper
parameters to investigate the effectiveness of syntactic feature
injection and multi-task learning. Each experiment utilizes
100 to 500 samples from the training set, with parameters
ranging from 0.1 to 0.9. The result is shown in Figure 3.

Effect of Syntactic Feature Injection
We evaluate the influence of syntactic information injection
by adjusting the value of λs controlling the weight of word
embedding and syntax embedding in Equation (4), where the
smaller λs denotes the more weight of syntax embedding.
Figure 3(a) shows that under all datasets and sample number
settings, the smaller λs (0.2-0.4) presents the optimal result,
indicating that syntactical information is more critical than
semantic information. More broadly, the best results can be
obtained by injecting syntax and semantics simultaneously.

Effect of Multi-task Learning Losses
In order to verify the impact of losses on the experimental
results, we adjust the weight λℓm of language model loss
and set λdep = 1 − λℓm. Figure 3(b) demonstrates that the
Micro F1 value increases noticeably at first, then starts to
decline. SAINT performs best when the weights of the two
losses are nearly equal. Actually, SAINT concentrates on the
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Model OntoNotes Wikiann
100 200 300 400 500 100 200 300 400 500

no augmentation 43.80 49.32 51.19 53.59 54.77 47.19 48.36 51.88 55.01 58.08

editing
methods

LwTR 45.22 50.90 53.74 55.62 58.07 48.55 52.51 54.92 56.86 58.61
SR 45.68 51.94 52.29 55.56 58.17 49.81 53.19 55.17 55.84 57.95
MR 46.14 51.08 52.25 55.03 55.33 46.20 50.47 50.69 54.26 55.39
SiS 44.93 49.62 51.85 55.09 56.81 47.21 52.30 54.22 57.28 57.10

generative
methods

DAGA 48.78 57.10 59.53 62.05 63.98 50.42 55.63 57.32 58.73 62.16
MulDA 56.47 61.03 63.02 64.96 65.26 50.20 57.33 59.28 60.99 65.48
PromDA 59.37 65.65 69.34 70.06 70.56 61.31 64.00 66.52 67.84 69.18

Our method 58.90 65.56 70.86 71.51 72.75 64.14 65.38 68.29 70.09 72.31

Table 1: Performance of different methods on the OntoNotes and Wikiann datasets under the Shot-{100, 200, 300, 400, 500} settings. The
best results are in bold while the second-best ones are underlined.

Model
OntoNotes Wikiann

100 300 500 100 300 500
F1(%) ↓% F1(%) ↓% F1(%) ↓% F1(%) ↓% F1(%) ↓% F1(%) ↓%

SAINT 58.9 - 70.86 - 72.75 - 64.14 - 68.29 - 72.31 -
w/o syntactic injection 55.85 3.05 66.87 3.99 68.91 3.84 60.87 3.27 64.41 3.88 68.05 4.26

w/o syntactic loss 57.12 1.78 68.51 2.35 69.78 2.97 61.13 3.01 64.72 3.57 67.97 4.34
w/o language model loss 57.57 1.33 69.34 1.52 71.01 1.74 62.85 1.29 66.84 1.45 70.50 1.81

Table 2: Results of the main components ablation experiment, where ↓ represents the model’s performance decline. Results with the most
significant reduction are marked in bold.

(a) Performance under different syntactic feature injection weights.

(b) Performance under different multi-task learning weights.

Figure 3: Effect of different hyper parameters.

fluency of sentences when λℓm is large, otherwise, SAINT
trends to keep the dependency consistency of sentences.
Consequently, SAINT performs better when the relative im-
portance of two tasks is more evenly distributed. Moreover,
the trends of the performance with weight λℓm are roughly
the same on both datasets.

3.6 Case Study
In this section, two case studies, i.e., comparing the data
quality of each baseline and visualizing the dependency con-

sistency of SAINT, are conducted to help further understand
our method.

Comparison of Data Generation
Figure 4 lists the data generated by each method that con-
tains the entity Bill Gates. It can be seen that some tokens
in the sentences generated by DAGA and MulDA may be
unk, primarily because these models build their vocabulary
using training data, ignoring the special tokens. Furthermore,
the sentences generated by DAGA and MulDA are not flu-
ent because they only use a small amount of data to train the
language model and do not consider the sentence’s grammat-
ical information. PromDA is capable of producing coherent
sentences, but the generated tokens are uncontrollable. As a
result, Bill Gates Foundation in the generated result deviates
from the semantics of the raw entity Bill Gates. In contrast,
on the one hand, SAINT takes syntactic dependency features
into account during data generation to ensure the fluency of
data generation. On the other hand, SAINT’s insertion trans-
former can help assemble the preset entity list, generating
domain-specific sentences. For the sentences generated by
SAINT, the entities Bill Gates, Apple, and Toyota Motor are
correctly preserved, and the semantics and domain are related
to the original sentence.

Analysis of Dependency Consistency
Figure 5 presents two dependency trees corresponding to the
raw and generated sentences by SAINT. Obviously, the gen-
erated sentences maintain a similar syntactic structure to the
raw ones. The first observation is that the dependency path
between the token Eton and College are the completely same.
Moreover, the dependency paths (-nsubj, obl, compound) and
(-nsubj, advmod, conj, compound) between the subject and
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Model Synthesized Sentence

Raw
[Bill Gates]person did not build [Apple]organization or 

[Toyota Motor]organization, Japan.

LwTR L. One not build Apple he Toyota MOT, China.

SR Bill Gates did non build Apple or Toyota Camry, USA.

MR
Bill Gates did not build Microsoft or Royal Dutch 

Shell, Japan.

SiS not build Bill Gates Apple or, Japan Toyota Motor.

DAGA
[Richard unk]person was joined in  January by [Bill 

Gates]person.

MulDA It is described by unk of [Bill Gates]person.

PromDA
[Bill Gates Foundation]organization is established in the 

United States. 

SAINT
[Bill Gates]person owns shares of [Apple]organization and 

[Toyota Motor]organization.

Figure 4: Generated sentences of LwTR, SR, MR, Sis, DAGA,
MulDA, PromDA and SAINT. For editing methods, the tokens in
orange are edited. For generative methods, the tokens in blue are
the generated entities, and the corresponding types are indicated in
italics.

the entity Eton are very similar. In conclusion, our method
can maintain the raw syntactic dependency, thus encouraging
label consistency when generating samples.

4 Related Work
In this section, we first introduce related research on NER
data augmentation, and then focus on controlled text genera-
tion which is employed in our work.

4.1 NER Data Augmentation
NER data augmentation can be summarized into two frame-
works: editing and generative methods. For the editing meth-
ods, Dai et al. and Sabty et al. utilized synonym replace-
ment techniques [Dai and Adel, 2020; Sabty et al., 2021].
Although these methods are simple and easy to understand,
the context of augmented samples could be too repetitive. As
an alternative, the generative approach uses PLMs to gen-
erate samples. Concretely, Chen et al. designed a neu-
ral network to learn the pattern of text features from raw
samples and output synthetic data by transferring such fea-
tures. Zhou et al. introduced an auxiliary classifier into the
major model to create data with reversed labels. Liu et al.
applied a back-translation strategy to address cross-lingual
NER. Wang et al. and Liu et al. instructed the PLMs
to create samples via prompt learning [Wang et al., 2022;
Liu et al., 2022b].

Our method boosts the performance of the NER model
with a combination of the insertion-based generation
paradigm and the injection of syntactic features to gener-
ate more fluent and semantic sentences with better label
consistency.

4.2 Controlled Text Generation
Controlled text generation can be divided into autoregressive
and non-autoregressive models. For autoregressive genera-
tion models, Ma et al. developed a simple attention mod-
ule for GPT-2 [Radford et al., 2019] to strengthen the weight

(a) Dependency tree of the raw sentence He was educated at Eton
College from 1616 to 1626.

(b) Dependency tree of the generated sentence He educated pri-
vately and at Eton College

Figure 5: Dependency trees of the raw and generated sentences. The
node marked with red color denotes the organization entity, while
the same dependency relations are marked with the same color.

of specific words. Iso produced sentences by an auto-mined
template with lexical occurrence limitation. Zhang et al. and
Carlsson et al. exploited the novel regulated prompt frame-
work respectively [Zhang and Song, 2022; Carlsson et al.,
2022], guiding a causal language model to generate samples
for maximum effectiveness. The non-autoregressive model
offered some fresh insights into the task. Zhang et al. im-
proved the structure of transformer to recursively conduct the
insertion process in a parallel manner, thus accelerating the
inference process considerably.

The proposed SAINT model explicitly incorporates syn-
tactic features into PLMs and employs a hard constraint gen-
eration paradigm to generate text.

5 Conclusion
In this paper, we analyze the main challenges of the low-
resource NER data augmentation task and present SAINT, a
novel controlled text generation model for NER data augmen-
tation. The proposed method leverages a hard-constrained
manner to generate new sentences with lexical and syntac-
tic constraints, which ensures the generated data is consis-
tent with source data both in semantic and syntactic feature
patterns. According to the results of experimental results,
SAINT can generate more syntactic sentences with fewer
noises and improve the performance of the NER model in
cases of insufficient annotated data, which exceeds that of the
SOTA baseline.
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[Souza et al., 2020] Fábio Souza, Rodrigo Nogueira, and
Roberto Lotufo. Portuguese named entity recognition us-
ing bert-crf. arXiv preprint arXiv:1909.10649, 2020.

[Sun and He, 2020] Xiao Sun and Jiajin He. A novel ap-
proach to generate a large scale of supervised data for short
text sentiment analysis. Multimedia Tools and Applica-
tions, 2020.

[Wang et al., 2022] Yufei Wang, Can Xu, Qingfeng Sun,
Huang Hu, Chongyang Tao, Xiubo Geng, and Daxin
Jiang. PromDA: Prompt-based data augmentation for low-
resource NLU tasks. In Proc. of ACL, 2022.

[Wei and Zou, 2019] Jason Wei and Kai Zou. EDA: Easy
data augmentation techniques for boosting performance on
text classification tasks. In Proc. of EMNLP, 2019.

[Wu et al., 2020] Qianhui Wu, Zijia Lin, Guoxin Wang, Hui
Chen, Börje F. Karlsson, Biqing Huang, and Chin-Yew
Lin. Enhanced meta-learning for cross-lingual named en-
tity recognition with minimal resources. In Proc. of AAAI,
2020.

[Yoo et al., 2019] Kang Min Yoo, Youhyun Shin, and Sang-
goo Lee. Data augmentation for spoken language under-
standing via joint variational generation. In Proc. of AAAI,
2019.

[Yu et al., 2018] Adams Wei Yu, David Dohan, Minh-Thang
Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and
Quoc V. Le. Qanet: Combining local convolution with
global self-attention for reading comprehension. In Proc.
of ICLR, 2018.

[Zhang and Song, 2022] Hanqing Zhang and Dawei Song.
DisCup: Discriminator cooperative unlikelihood prompt-
tuning for controllable text generation. In Proc. of
EMNLP, 2022.

[Zhang et al., 2015] Xiang Zhang, Junbo Jake Zhao, and
Yann LeCun. Character-level convolutional networks for
text classification. In Proc. of NeurIPS, 2015.

[Zhang et al., 2020] Yizhe Zhang, Guoyin Wang, Chunyuan
Li, Zhe Gan, Chris Brockett, and Bill Dolan. POINTER:
Constrained progressive text generation via insertion-
based generative pre-training. In Proc. of EMNLP, 2020.

[Zhou et al., 2022] Jing Zhou, Yanan Zheng, Jie Tang,
Li Jian, and Zhilin Yang. FlipDA: Effective and robust
data augmentation for few-shot learning. In Proc. of ACL,
2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5112


	Introduction
	Method
	Training Sample Creation
	Syntactic Feature Labeling
	Token Selector
	Dynamic Data Construction

	Syntactic-aware Insertion Transformer Training
	Syntactic Feature Injection
	Multi-task Learning

	Data Generation
	Incremental Generation
	Dependency Similarity Comparison


	Experiments
	Datasets and Experimental Settings
	Baselines
	Editing Methods
	Generative Methods

	Main Results
	Ablation Study
	Effect of Hyper Parameters
	Effect of Syntactic Feature Injection
	Effect of Multi-task Learning Losses

	Case Study
	Comparison of Data Generation
	Analysis of Dependency Consistency


	Related Work
	NER Data Augmentation
	Controlled Text Generation

	Conclusion

