
Dimensional Inconsistency Measures and Postulates in
Spatio-Temporal Databases (Extended Abstract)∗

John Grant1 , Maria Vanina Martinez2 , Cristian Molinaro3 , Francesco Parisi3
1Department of Computer Science and UMIACS, University of Maryland, USA

2Department of Computer Science, University of Buenos Aires, Argentina
3 DIMES Department, University of Calabria, Italy

grant@cs.umd.edu, mvmartinez@dc.uba.ar, {cmolinaro, fparisi}@dimes.unical.it

Abstract
We define and investigate new inconsistency mea-
sures that are particularly suitable for dealing with
inconsistent spatio-temporal information, as they
explicitly take into account the spatial and tempo-
ral dimensions, as well as the dimension concern-
ing the identifiers of the monitored objects. Specif-
ically, we first define natural measures that look at
individual dimensions (time, space, and objects),
and then propose measures based on the notion of a
repair. We then analyze their behavior w.r.t. com-
mon postulates defined for classical propositional
knowledge bases, and find that the latter are not
suitable for spatio-temporal databases, in that the
proposed inconsistency measures do not often sat-
isfy them. In light of this, we argue that also postu-
lates should explicitly take into account the spatial,
temporal, and object dimensions, and thus define
“dimension-aware” counterparts of common pos-
tulates, which are indeed often satisfied by the new
inconsistency measures. Finally, we study the com-
plexity of the proposed inconsistency measures.

1 Spatio-Temporal Databases
The representation and processing of spatio-temporal data has
attracted much attention by the AI community [Cohn and
Hazarika, 2001; Gabelaia et al., 2005; Yaman et al., 2005;
Knapp et al., 2006]. In this paper, we focus on Spatio-
Temporal (ST) Databases (DBs), representing atomic state-
ments of the form “object id is/was/will be inside region r at
time t”. Spatio-Temporal databases can be viewed as a spe-
cial case of Spatial Probabilistic Temporal Databases [Parker
et al., 2009; Parisi et al., 2010; Grant et al., 2010; Grant
et al., 2013b; Grant et al., 2013a; Parisi and Grant, 2016;
Parisi and Grant, 2017; Grant et al., 2017; Grant et al., 2018].

Below we briefly introduce the syntax and semantics of ST
databases. We assume the existence of three finite sets: ID is
the set of object ids, T is the set of integer time values, and
Space is the set of point locations. We assume that an object
can be in only one location at a time, but a single location

∗This paper is an extended abstract of [Grant et al., 2021] pub-
lished in the Journal of Artificial Intelligence Research.

may contain more than one object. A region is a nonempty
subset of Space.
Definition 1. An ST atom is a tuple (id, r, t), where id ∈ ID
is an object id, r is a region, and t ∈ T is a time value.

An ST database is a finite set of ST atoms.
Intuitively, the ST atom (id, r, t) says that the location of

object id belongs to region r at time t. Hence, ST atoms can
represent information about the past and the present, such
as that generated by techniques for interpreting RFID read-
ings [Fazzinga et al., 2014; Fazzinga et al., 2016], but also
information about the future, such as that derived from meth-
ods for predicting the destination of moving objects [Mittu
and Ross, 2003; Hammel et al., 2003; Southey et al., 2007],
or from querying predictive databases [Akdere et al., 2011;
Agarwal et al., 2010; Parisi et al., 2013]. The meaning of an
ST database is given by the interpretations that satisfy it.
Definition 2. An ST interpretation I is a function I : ID ×
T → Space.

An interpretation specifies a trajectory for each id ∈ ID by
saying where in Space object id was/is/will be at each time
t ∈ T. We now define satisfaction and ST models.
Definition 3. Let a = (id, r, t) be an ST atom and I an ST
interpretation. We say that I satisfies a (denoted I |= a) iff
I(id, t) ∈ r. I satisfies an ST database S (denoted I |= S)
iff for all a ∈ S , I |= a. We say that I is a model for a (resp.,
S) iff I satisfies a (resp., S).

Finally, we define when an ST database is consistent.
Definition 4. An ST database S is consistent iff there exists
at least one model for S .

The set of all minimal (under set-inclusion) inconsistent
subsets of an ST database S is denoted as M(S).

2 Notion of Inconsistency Measure for ST
Databases and (Classical) Postulates

An inconsistency measure (IM) is a function that assigns a
nonnegative real value or infinity to every ST database. We
use R∞

≥0 for the set of nonnegative real numbers and the in-
finity symbol, and use L for the set of all ST databases.
Definition 5. An inconsistency measure I : L → R∞

≥0 is
a function such that, for every S,S ′ ∈ L, the following two
properties hold:
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1. (Consistency) I(S) = 0 iff S is consistent.

2. (Monotony) if S ⊆ S ′, then I(S) ≤ I(S ′).

These two properties ensure that all and only consistent ST
databases get a measure of 0 and that the measure is mono-
tonic w.r.t. set-inclusion.

We now define several properties that some inconsistency
measures possess and that are intuitively desirable. Specifi-
cally, we present a list of eight additional properties that have
counterparts for propositional knowledge bases. For an ST
database S , the ST atoms that appear in some minimal in-
consistent subset are called problematic ST atoms. The ST
atoms that are not problematic are called free. Formally,
we write Problematic(S) =

⋃
M∈M(S) M and Free(S) =

S \ Problematic(S).
Definition 6. Let I be an IM, and S , S ′ be two ST databases.
We consider the following postulates:

1. (Free-Formula Independence) If (id, r, t) ∈ Free(S) then
I(S) = I(S \ {(id, r, t)}).

2. (Penalty) If (id, r, t) ∈ Problematic(S) then I(S) >
I(S \ {(id, r, t)}).

3. (Dominance) If (id, r, t) and (id, r′, t) are ST atoms such
that r ⊆ r′ then I(S ∪{(id, r, t)}) ≥ I(S ∪{(id, r′, t)}).

4. (Super-Additivity) If S∩S ′ = ∅ then I(S∪S ′) ≥ I(S)+
I(S ′).

5. (Attenuation) If M ,M ′ ∈ M(S) and |M | < |M ′| then
I(M ) > I(M ′).

6. (Equal Conflict) If M ,M ′ ∈ M(S) and |M | = |M ′| then
I(M ) = I(M ′).

7. (MI-Normalization) If M ∈ M(S) then I(M )=1.

8. (MI-Separability) If M(S ∪ S ′) = M(S) ∪ M(S ′) and
M(S) ∩M(S ′) = ∅ then I(S ∪ S ′) = I(S) + I(S ′).

We will find that in most cases these postulates are not sat-
isfied, suggesting that they are not appropriate for the new
IMs, because such postulates do not take into account the
time, space, and object dimensional information within ST
atoms. This turns out to be too coarse-grained an approach
for ST databases. To cope with this issue, we will define “di-
mensional” postulates (in Section 4), which are more suitable
for ST databases and the new inconsistency measures.

3 Inconsistency Measures for ST Databases
In this section, we propose several inconsistency measures
that are relevant for ST databases, as they explicitly take into
account the dimensions characterizing such data.

3.1 Dimensional Inconsistency Measures
We use the fact that ST databases can be considered along
three dimensions: objects, time, and space. This allows us
to measure the inconsistency along one or a combination
of dimensions. Separating the dimensions of ST databases
requires looking inside the formulas. Consider what such
a step means for propositional knowledge bases. The for-
mulas there contain propositions and logical connectives (as

well as parentheses). As IMs typically use only the prob-
lematic formulas, a natural way of measuring inconsistency
is to count the number of distinct propositions in the prob-
lematic formulas. Let us call a proposition p problematic
if p appears in a problematic formula. Then we can define
IP (K) = |{p | p is a problematic proposition}| for a propo-
sitional knowledge base K. Actually, we did not find this
definition in the literature on IMs. However, it is the absolute
version of a relative IM studied in [Xiao and Ma, 2012]. So
IP is our inspiration for measuring inconsistency along the
three dimensions.

In some cases we may just be interested in how many ob-
jects or how many time values are involved in an inconsis-
tency, which leads us to the two IMs defined below.

An IM based strictly on objects is:

IO(S) = |{id ∈ ID | (id, r, t) ∈ M ∈ M(S)}|.
Thus, IO counts how many objects are contained in some
minimal inconsistent subset, that is, the number of objects
involved in an inconsistency.

Similar to the IM along the object dimension, a natural IM
along the time dimension counts how many time values are
involved in an inconsistency:

IT(S) = |{t ∈ T | (id, r, t) ∈ M ∈ M(S)}|.
It is natural to combine the object and time dimensions be-

fore dealing with the spatial dimension. This can be done by
combining the two dimensions individually, that is, comput-
ing IO and IT and then applying some operation(s) to the two
numbers. Instead of doing so, we observe that in many cases
we are dealing with id, t pairs. Indeed, all the ST atoms of
a minimal inconsistent set must have the same id and t val-
ues. The following IM is thus defined looking at id, t pairs in
minimal inconsistent subsets:

IOT (S) = |{(id, t) | (id, r, t) ∈ M ∈ M(S)}|.
Thus, IOT counts how many object-time pairs are involved
in an inconsistency.

Let us now turn our attention to the space dimension. For
an ST database S we define a region RS as follows:

RS =
⋃

{r | (id, r, t) ∈ M ∈ M(S)}.

Then, we define IS(S) = |RS |. Thus, IS counts the number
of points that are in regions involved in an inconsistency.

For the next measure involving space, we require a met-
ric d : Space × Space → [0,∞). First, we define
distance for minimal inconsistent subsets. Let M be a
minimal inconsistent subset of an ST database S: M =
{(id, r1, t), . . . , (id, rn, t)}. We start by defining n new re-
gions, one for each i, 1 ≤ i ≤ n, as Ri =

⋂
j ̸=i rj . Since M

is a minimal inconsistent set, for each i, 1 ≤ i ≤ n, Ri ̸= ∅,
but ∩n

i=1ri = ∅. We define the value d(M ) as:

d(M ) = min{d(Ri, ri) | 1 ≤ i ≤ n}.
We can think of d(M ) as the minimal distance in Space be-
tween any regions involved in a minimal inconsistent subset.
Then, we define: ID(S) =

∑
M∈M(S) d(M ). Thus ID sums

the minimal distances between regions involved in minimal
inconsistent subsets.
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3.2 Repair-based Inconsistency Measures
In this section, we define three new inconsistency measures,
namely Iid , Itime , and Iregion , which are based on the cost
of restoring consistency along the object, time, and spatial di-
mensions. We also introduce measure Icard, which is not di-
mensional (it deals with whole ST atoms), but it is also based
on the cost of restoring consistency in a minimal way as the
other three measures introduced in this section.

In general, an update of an ST atom a is an ST atom a′

derived from a by changing (at most) one of its dimensions.
Hence, we will deal with 3 types of updates.
Definition 7. Given an ST atom a = (id, r, t),

1. an id-update of a is an ST atom a′ = (id′, r, t);

2. a time-update of a is an ST atom a′ = (id, r, t′);

3. a region-update of a is an ST atom a′ = (id, r′, t).

Thus, an id-update (resp., time-update, region-update) of a
is either the result of changing the id value (resp., time value,
region) of a or a itself. Corrections are ways of changing an
inconsistent ST database to a consistent one using updates.
Definition 8. Let S be an ST database. A consistent ST
database S ′ is called an X-correction of S , where X ∈
{id , time, region}, if there is a surjective function Xcorr :
S → S ′ s.t. for every a ∈ S , Xcorr(a) is an X-update of a.

So an id-correction allows only id-updates, and the other
types of corrections are defined analogously.

We assume a metric dID on the set ID of object iden-
tifiers for measuring the cost of updating id to id′ for an
ST atom. Thus, the cost of fixing the object identifier
id of an ST atom a by setting it to id′ is given by the
distance dID(id, id

′) between the two identifiers. In the
following, we denote by costid(a, a

′) the cost of chang-
ing atom a into an id-update a′. Thus, costid(a, a

′) =
dID(id, id

′). Moreover, given an ST database S and
an id-correction S ′, let Cid be the set of all functions
idcorr as per Definition 8. We define costid(S,S ′) =
minidcorr∈Cid

{
∑

a∈S costid(a, idcorr(a))}.
Definition 9. An id-repair for an ST database S is an id-
correction S ′ of S such that for all id-corrections S ′′ of S ,
costid(S,S ′) ≤ costid(S,S ′′).

We are now ready to define the measure Iid . It is the cost
of an id-repair, if one exists. It is possible that there is no id-
correction at all, as all possible sets of id-updates result in an
inconsistent database. Recall that ID is fixed.
Definition 10. Given an ST database S , Iid(S) = ∞ if there
is no id-repair; otherwise Iid(S) = costid(S,S ′) where S ′

is an id-repair for S .

The next repairing strategy we use is based on minimally
updating the time values associated with the ST atoms. We
need a metric dT on the set of time values in T measur-
ing the cost of updating t to t′. For this purpose we can
use for instance dT (t, t

′) = |t′ − t|. Then, we denote
by costtime(a, a

′) the cost of changing atom a to a time-
update a′, where t in a was changed to t′ in a′, and define
costtime(a, a

′) = dT (t, t
′). Finally, given an ST database

S and a time-correction S ′, let Ct be the set of all functions

timecorr as per Definition 8. We define costtime(S,S ′) =
mintimecorr∈Ct

{
∑

a∈S costtime(a, timecorr(a))}.
The notions of time-repair and the measure Itime are anal-

ogous to id-repair and Iid but for the time dimension.

Definition 11. A time-repair for an ST database S is a time-
correction S ′ of S such that for all time-corrections S ′′ of S ,
costtime(S,S ′) ≤ costtime(S,S ′′).

Definition 12. Given an ST database S , Itime(S) =
∞ if there is no time-repair, otherwise Itime(S) =
costtime(S,S ′) where S ′ is a time-repair for S .

The next repairing strategy we use is based on minimally
updating regions in ST atoms. Similar to the previously intro-
duced notions of repairs, we use a metric dR(r, r

′) on the set
of regions. For instance, since a region is a set of point loca-
tions, we might measure the cost of updating a region r into
a region r′ as the cardinality of their symmetric difference,
that is, we might define dR(r, r

′) = |(r \ r′) ∪ (r′ \ r)|. We
denote by costregion(a, a

′) the cost of changing atom a to a
region-update a′, where r in a was changed to r′ in a′, and
define costregion(a, a′) = dR(r, r

′). Given an ST database S
and a region-correction S ′, let Cr be the set of all functions
regcorr as per Definition 8. We define costregion(S,S ′) =
minregcorr∈Cr

{
∑

a∈S costregion(a, regcorr(a))}. The no-
tions of region-repair and Iregion are as follows.

Definition 13. A region-repair for an ST database S is a
region-correction S ′ of S such that for all region-corrections
S ′′ of S , costregion(S,S ′) ≤ costregion(S,S ′′).

Definition 14. Given an ST database S , Iregion(S) =
costregion(S,S ′) where S ′ is a region-repair for S .

The last repairing strategy we consider relies on assuming
that some ST atoms were wrongly generated and thus need to
be removed to restore consistency. We require that the num-
ber of removed atoms be minimal.

Definition 15. A card-repair for an ST database S
is a consistent subset S ′ of S such that |S ′| =
max {|S ′′| such that S ′′ is a consistent subset of S }. The
cost of card-repair S ′ for S is costcard(S,S ′) = |S| − |S ′|.
Definition 16. Given an ST database S , Icard(S) =
costcard(S,S ′) where S ′ is a card-repair for S .

4 Dimensional Postulates
In this section, we propose dimensional versions for some of
the postulates—we will find in the next section that in several
cases the dimensional postulate holds even though the origi-
nal postulate does not hold.

Definition 17 (Dimensional Penalty). Let I be an IM and S
be an ST database.

1. (Object Penalty) If (id, r, t) ∈ Problematic(S) and A =
{(id, r′, t′) ∈ Problematic(S)} then I(S) > I(S \A).

2. (Time Penalty) If (id, r, t) ∈ Problematic(S) and A =
{(id′, r′, t) ∈ Problematic(S)} then I(S) > I(S \A).

3. (Space Penalty) If (id, r, t) ∈ Problematic(S) and A =
{(id′, r′, t′) ∈ Problematic(S) | r∩r′ ̸= ∅} then I(S) >
I(S \A).
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Dimensional IMs Repair-based IMs
IO IT IOT IS ID Iid Itime Iregion Icard

Free-Formula Independence ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Penalty ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Dominance ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
Super-Additivity ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Attenuation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Equal Conflict ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

MI-Normalization ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
MI-Separability ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Dimensional Penalty ✓ ✓ – ✓ ✓ ✓* ✓* ✓ –
Dimensional Super-Additivity ✓ ✓ – ✓ ✓ ✓ ✓ ✓ –
Dimensional MI-Separability ✓ ✓ – ✓ ✓ ✗ ✗ ✓ –

Complexity P P P P ⋆ P ⋆ NP-c NP-c P † P

Table 1: Classical/dimensional postulate satisfaction and complexity of dimensional and repair-based IMs (✓∗: satisfied when measures
return a finite value; ⋆: under the restriction of isothetic rectangular regions; †: for the symmetric difference metric; –: not applicable).

In the following, for an ST database S , we use the follow-
ing notations: ID(S) = {id | (id, r, t) ∈ S}, Time(S) =
{t | (id, r, t) ∈ S}, and Region(S) =

⋃
{r | (id, r, t) ∈ S}.

Definition 18 (Dimensional Super-Additivity). Let I be
an IM, and S,S ′ be two ST databases. For X ∈
{ID,Time,Region}, if X(S)∩X(S ′) = ∅ then I(S∪S ′) ≥
I(S) + I(S ′).
Definition 19 (Dimensional MI-Separability). Let I be
an IM, and S,S ′ be two ST databases. For X ∈
{ID,Time,Region}, if X(S)∩X(S ′) = ∅ and M(S∪S ′) =
M(S) ∪M(S ′), then I(S ∪ S ′) = I(S) + I(S ′).

5 Postulate Satisfaction and Complexity
We analyze which postulates, both classical (cf. Definition 6)
and dimensional (cf. Section 4) ones, are satisfied by the pro-
posed IMs, considering dimensional as well as repair-based
IMs (cf. Section 3). We also analyze the time complexity of
our IMs. Results are summarized in Table 1. Each row in
Table 1 but the last one refers to a postulate and shows which
IMs satisfy it. The first 8 postulates are classical ones, while
the last 3 are dimensional. The first 5 IMs (i.e., columns) are
dimensional ones, while the remaining 4 are repair-based.
Classical Postulate Satisfaction. We first consider dimen-
sional IMs. We note that IO, IT, and IOT satisfy the same
set of (classical) postulates. The two IMs based on the
space dimension behave quite differently: IS satisfies only
Free-Formula Independence; ID satisfies postulates (Penalty,
Super-Additivity, and MI-Separability) that are not satisfied
by any other dimensional IMs, but it does not satisfy postu-
lates (Equal Conflict and MI-Normalization) that are satisfied
by other dimensional IMs.

Let us consider now repair-based IMs. We first note that
Iid and Itime behave in the same way, satisfying Dom-
inance and Super-Additivity, while Iregion satisfies only
Super-Additivity. In contrast, the classical postulates fit quite
well with Icard , which satisfies all of them except Penalty,
Attenuation, and MI-Separability. This should not be sur-
prising, since the classical postulates are designed for non-
dimensional IMs like Icard. However, we will see below that

the measures based on the dimensions satisfy the dimensional
versions of some classical postulates they do not satisfy.

Dimensional Postulate Satisfaction. Notice that we do not
include IOT as it deals with two dimensions and we restricted
the dimensional postulates to a single dimension. Also, we do
not include Icard , as it does not deal with dimensions.

We first consider dimensional IMs. All dimensional IMs
satisfy all dimensional postulates. Considering the dimen-
sional postulates in place of the classical counterpart, IO
and IT satisfy all postulates but Attenuation, thus the high-
est possible number, since Attenuation is incompatible with
MI-Normalization (cf. [Grant et al., 2021]). The number of
postulates satisfied by considering dimensional and classical
postulates has doubled for all the measures except for ID.

We now consider repair-based IMs. Iid and Itime sat-
isfy the dimensional postulates except Dimensional MI-
Separability, with Dimensional Penalty being satisfied when
the IM returns a finite value. Then, Iregion satisfies all dimen-
sional postulates unconditionally. Also, if the metric used for
measuring region distance is the symmetric difference, Icard
coincides with Iregion (cf. [Grant et al., 2021]), and consider-
ing dimensional and classical postulates, Iregion satisfies all
the postulates except Attenuation, that is, the maximum num-
ber of postulates that can be jointly satisfied.

Overall, our analysis shows that the dimensional postulates
suit very well the dimensional inconsistency measures.

Complexity Analysis. Following [Thimm and Wallner,
2016; Thimm, 2018], we characterize the complexity of
the following decision problem for an IM I: given an ST
database S and rational number k, decide whether I(S) ≤ k.

The complexity of such problem for our IMs is reported
in (the last row of) Table 1; more specifically: it is in P for
IO, IT, IOT, and Icard ; it is in P for IS and ID under the re-
striction of isothetic rectangular regions, by which we mean
rectangles oriented in the standard way, that is, with horizon-
tal and vertical sides; it is in P for Iregion when the symmetric
difference is employed as the metric to measure distance be-
tween regions; finally, it is NP-complete for Iid and Itime .

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5745



References
[Agarwal et al., 2010] Deepak Agarwal, Datong Chen, Long

ji Lin, Jayavel Shanmugasundaram, and Erik Vee. Fore-
casting high-dimensional data. In Proc. SIGMOD, pages
1003–1012, 2010.

[Akdere et al., 2011] Mert Akdere, Ugur Cetintemel, Matteo
Riondato, Eli Upfal, and Stanley B. Zdonik. The case
for predictive database systems: Opportunities and chal-
lenges. In Proc. CIDR, pages 167–174, 2011.

[Cohn and Hazarika, 2001] Anthony G. Cohn and Shya-
manta M. Hazarika. Qualitative spatial representation and
reasoning: An overview. Fundamenta Informaticae, 46(1-
2):1–29, 2001.

[Fazzinga et al., 2014] Bettina Fazzinga, Sergio Flesca, Fil-
ippo Furfaro, and Francesco Parisi. Offline cleaning of
RFID trajectory data. In Proc. SSDBM, page 5, 2014.

[Fazzinga et al., 2016] Bettina Fazzinga, Sergio Flesca, Fil-
ippo Furfaro, and Francesco Parisi. Exploiting integrity
constraints for cleaning trajectories of RFID-monitored
objects. ACM Transactions on Database Systems, 41(4),
2016.

[Gabelaia et al., 2005] David Gabelaia, Roman Kontchakov,
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