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Abstract

Expectation maximization (EM) is the default algo-
rithm for fitting probabilistic models with missing or
latent variables, yet we lack a full understanding of
its non-asymptotic convergence properties. Previous
works show results along the lines of “EM converges
at least as fast as gradient descent” by assuming the
conditions for the convergence of gradient descent
apply. This approach is not only loose, in that it does
not capture that EM can make more progress than
a gradient step, but the assumptions fail to hold for
textbook examples of EM like Gaussian mixtures. In
this work, we show that for the common setting of
exponential family distributions, viewing EM as a
mirror descent algorithm leads to convergence rates
in Kullback-Leibler (KL) divergence and how the KL
divergence is related to first-order stationarity via
Bregman divergences. In contrast to previous works,
the analysis is invariant to the choice of parametriza-
tion and holds with minimal assumptions. We also
show applications of these ideas to local linear (and
superlinear) convergence rates, generalized EM, and
non-exponential family distributions.

1 Introduction

Expectation maximization (EM) is the most common approach
to fitting probabilistic models with missing data or latent vari-
ables. EM was formalized by Dempster et al., who discussed a
wide variety of earlier works that independently discovered the
algorithm and domains where EM is used. They already listed
multivariate sampling, normal linear models, finite mixtures,
variance components, hyperparameter estimation, iteratively
reweighted least squares, and factor analysis. To this day, EM
continues to be used for these applications and others, like
semi-supervised learning [Ghahramani and Jordan, 1994], hid-
den Markov models [Rabiner, 1989], continuous mixtures
[Caron and Doucet, 2008], mixture of experts [Jordan and
Xu, 1995], and image reconstruction [Figueiredo and Nowak,

*This is an extended abstract of a paper that won best award at
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Figure 1: The surrogate optimized by EM is a tighter bound on the
objective £ than the quadratic bound implied by smoothness, opti-
mized by gradient descent.

2003]. The many applications of EM have made the work of
Dempster et al. one of the most influential in the field.

Since the development of EM and subsequent clarifications
on the necessary conditions for convergence [Boyles, 1983;
Wu, 1983], a large number of works have shown conver-
gence results for EM and its many extensions, leading to a
variety of insights about the algorithm, such as the effect of
the ratio of missing information [Xu and Jordan, 1996] and
the sample size [Wang et al., 2015; Daskalakis et al., 2017,
Balakrishnan er al., 2017]. However, existing results on the
global, non-asymptotic convergence of EM rely on proof tech-
niques developed for gradient descent on smooth functions,
which rely on quadratic upper-bounds on the objective.! Infor-
mally, this approach argues that the maximization step of the
surrogate constructed by EM does at least as well as gradient
descent on a quadratic surrogate with a constant step-size, as
illustrated in Figure 1.

The use of smoothness as a starting point leads to results that
imply that EM behaves as a gradient method with a constant
step-size. If true, there would be no difference between EM
and its gradient-based variants [Lange er al., 2000]. This does
not hold, however, and the resulting convergence rates are
inevitably loose; EM makes more progress than this worst-case
bound even on simple problems, as shown in Figure 2.

Another issue is that, similarly to how Newton’s method
is invariant to affine reparametrizations, EM is invariant to
any homeomorphism [Varadhan and Roland, 2004]; the steps
taken are the same for any continuous, invertible reparametriza-
tion. This is not reflected by current analyses because the
parametrization influences the smoothness of the function and

'As EM is a maximization algorithm, we should say “gradient
ascent” and “lower-bound”. We use the language of minimization to
make the connections with the optimization literature more explicit.
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Figure 2: Performance of EM and gradient descent (GD) with constant
step-size, selected by grid-search, for a Gaussian mixture model on
the Old Faithful dataset. The large gap between the two methods
suggests that existing theory for gradient descent is insufficient to
explain the performance of EM.

the resulting convergence rate. For these reasons, the general
frameworks proposed in the optimization literature [Raza-
viyayn, 2014; Mairal, 2015] which view EM as a special case,
do not reflect that EM is faster than typical members of these
frameworks and yield loose analyses.

Most importantly, the assumption that the objective func-
tion is bounded by a quadratic does not hold in general. Re-
sults relying on smoothness do not apply, for example, to the
textbook illustration of EM: Gaussian mixtures with learned
covariance matrices [Bishop, 2007; Murphy, 2012]. This is
shown in Figure 3. The smoothness assumption is a reasonable
simplification for local analyses, as it only needs to hold over
a small subspace of the parameter space. In this setting, it does
not detract from the main contribution of works investigating
statistical properties or large-sample behavior. It does not hold,
however, for global convergence analyses with arbitrary ini-
tializations. Our focus in this work is analyzing the classic EM
algorithm when run for a finite number of iterations on a finite
dataset, the setting in which people have been using EM for
over 40 years and continue to use today.

We focus on applications of EM to exponential family mod-
els, of which Gaussian mixtures are a special case. Expo-
nential families are by far the most common setting and
an important special case as the M-step has a closed form
solution. Modern stochastic and online extensions of EM
also rely on the form of exponential families to efficiently
summarize past data [Neal and Hinton, 1998; Sato, 1999;
Cappé and Moulines, 2009].

The main tool for the analysis is the Kullback-Leibler (KL)
divergence to describe change across iterations. This approach
was used for asymptotic convergence [Csiszar and Tusnady,
1984; Chrétien and Hero, 2000; Tseng, 2004] and describe
extensions of EM or EM-like algorithms [Banerjee et al. 2005,
Amid and Warmuth 2020]. But it has not yet been applied
to non-asymptotic convergence. Using the KL divergence be-
tween distributions rather than the Euclidean distance between
their parameters, the results do not rely on invalid smoothness
assumptions and are invariant to the choice of parametrization.

Focusing on convergence to a stationary point, as EM ob-
jective L is usually non-convex, an informal summary of the
main difference between previous analyses using Euclidean
smoothness and our results is that, after 7" iterations,

Smoothness: min;<r||VL(6;)

2 L£(01)—L*
KL divergence: min;<p KL[0;41]6;] < %
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Figure 3: An exponential family distribution that cannot be smooth in
Euclidean norm; fitting a Gaussian A/ (,u, 02), including its variance.
As the loss diverges to oo as 0 — 0, the objective cannot be upper-
bounded by a quadratic function.

where £* is the optimal value of the objective, £(61) — L* is
the initial optimality gap and L is the smoothness constant. For
non-smooth models, such as Gaussians with learned variances
(Fig. 3), L = oo and the bound is vacuous, whereas bounds in
KL divergence do not depend on problem-specific constants.

The key observation for exponential families is that M-step
iterations match the moments of the model to the sufficient
statistics of the data. We show that EM can be interpreted as
a mirror descent update, where each iteration minimizes the
linearization of the objective and a KL divergence penaliza-
tion (rather than the gradient descent update which uses the
Euclidean distance between parameters instead). While the
connection between EM and exponential families is far from
new, as it predates the codification of EM by Dempster et al.,
the further connection to mirror descent to describe its behav-
ior is, to the best of our knowledge, not acknowledged in the
literature. More closely related to general optimization, our
work can be seen as an application of the recent perspective of
mirror descent as defining smoothness relative to a reference
function, as presented by Bauschke et al. and Lu et al.. Our
main results are:

¢ Show that EM for the exponential family is equivalent
to mirror descent, and that the EM objective is relatively
smooth in KL divergence.

» Show the first homeomorphic-invariant non-asymptotic
EM convergence rate, and how the KL divergence between
iterates relates to stationarity and the natural gradient.

» Show how the ratio of missing information affects the non-
asymptotic linear (or superlinear) convergence rate of EM
around minimizers.

» Extend the results to generalized EM, where the M-step is
only solved approximately.

* Discuss how to handle cases where the M-step is not in the
exponential family (and might be non-differentiable) by
analyzing the E-step.

2 EM and Exponential Families

EM applies when we want to maximize the likelihood p(z | 9)
of data x given parameters 6, but the likelihood depends on
unobserved variables z. By marginalizing over z, we obtain
the negative log-likelihood (NLL), that we want to minimize,

L(0) =—logp(z|0) = —log/p(m,z |6)dz, e
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where p(z, z | 0) is the complete-data likelihood. The integral
is multi-dimensional if z is, and a summation for discrete val-
ues, but we write all cases as a single integral for simplicity. EM
is most useful when the complete-data NLL, — log p(z, z | §),
is a convex function of 6 and solvable in closed form if z were
known. EM defines the surrogate Qy(¢), which estimates £(¢)
using the expected values for the latent variables at 6,

£(6) < Qo(6) = — [logp(a, 2| 8) plz] 2,0)d2,  (2)

and iteratively updates 6; 1 € arg min, Qp,(¢). The compu-
tation of the surrogate Qy(+) and its minimization are typically
referred to as the E-step and M-step. Two fundamental results
about EM are that, up to a constant, the surrogate is an upper-
bound on the objective and improvement on @)y translates
to improvement on £, and the gradients of the loss and the
surrogate match at the point it is formed, VQy(0) = VL(6).

Many canonical applications of EM, including mixture of
Gaussians, are special cases where the complete-data distribu-
tion p(z, z | #) is an exponential family distribution;

p(z, 2[0) o exp({S(z, 2),6) — A(6)), 3)

where S, 0, and A are the sufficient statistics, natural param-
eters, and log-partition function. Exponential families are an
important special case as the M-step has a closed-form solution.
The update depends on the data only through the sufficient
statistics, and the minimization of the surrogate reduces to

VA(GH_l) = EP(Z\l‘ﬁt)[S(x?Z)]' (4)

The E-step computes the expected sufficient statistics the M-
step finds the parameters 6 that satisfy Equation (4).

3 Main Result: EM as Mirror Descent

Although EM iterations strictly decrease the objective function,
this does not directly imply convergence to stationary points,
even asymptotically [Boyles, 1983; Wu, 1983]. Characteriz-
ing the progress to ensure convergence requires additional
assumptions. Local analyses typically assume that the EM
update contracts the distance to a local minima 6%,

1641 — 67| < cll6 — 07,

for some ¢ < 1. On the other hand, global analyses typically
assume the surrogate is smooth in Euclidean norm,

IVQ.(0) = VQ.(9)] < L6 — o],

for all # and ¢, and some fixed constant L. This is equivalent
to assuming the following upper bound holds,

£(8) < £(6) + (VE(8), 6 — 6) + L]0 — 6"

Such assumptions are reasonable for local analyses, but the
worst-case value of L for global results can be infinite, as in
the simple example of Figure 3. Instead, we show that the
following upper-bound in KL divergence holds.

PROPOSITION 1. For exponential family distributions, the
M-step update in Expectation-Maximization is equivalent to
the minimization of the following upper-bound;

L(¢) < L(0) + (VL(O), ¢ — 0) + Da(6,0), (5
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where A is the log-partition of the complete-data distribution,
and Du(¢,0) = KL[p(z,z|0)||p(x, 2| ¢)] is the Bregman
divergence induced by A;

Da(¢,0) = A(¢) — A(0) = (VA(0),¢ — 0).

While the upper bound is expressed in a specific parametriza-
tion to specify the distributions, the KL divergence is a property
of the distributions, independent of their representation. As
this upper-bound is the one minimized by the M-step, it is a
direct description of the algorithm rather than an additional
surrogate used for convenience, as was illustrated in Figure 1.

This gives an interpretation of EM in terms of the mirror
descent algorithm [Nemirovski and Yudin, 1983], the mini-
mization of a first-order Taylor expansion and Bregman diver-
gence as in Equation (5), with step-size o = 1. In the recent
perspective of mirror descent framed as relative smoothness
[Bauschke et al., 2017; Lu et al., 2018], the objective function
is 1-smooth, relative to A. Existing results [Lu et al. 2018, The-
orem 3.1] then directly imply the following local result, when
the algorithm enters a convex region ( up to non-degeneracy
assumptions).

COROLLARY 1. For exponential families, if EM is initialized
in a locally-convex region with minimum 0%,

£(0r) ~ £(6°) < 1 KLip(z, = 0) (.2 167)]. ©)

And adapting the proofs to the non-convex setting yields the
first global, non-asymptotic convergence rate for EM to station-
ary points that does not depend on problem-specific constants.

PROPOSITION 2. EM for exponential family distributions con-
verges at the rate

L(01) — L*
min KL[p(r, 2| 0,1) In(e 2 0] < “O0=E"

This result implies that the distribution fit by EM stops chang-
ing, but it does not—in itself—guarantee progress toward a
stationary point, as it would also be satisfied by an algorithm
that does not move, if 6,17 = ;. In the Euclidean setting
of gradient descent with constant step-size, Proposition 2 is
the equivalent of the statement that the distance between iter-
ates ||0z41 — 0:]| converges. As |01 — 0] o< || VL(O:)], it
also implies that the gradient norm converges. A similar result
holds for EM, where measuring distances between iterates with
Dy leads to stationarity in the dual divergence Dax.

A useful simplification to interpret the divergence in Propo-
sition 2 is to consider a locally equivalent norm. By a second-
order Taylor expansion, it can be shown that

KL[p(z, 2| 0141) || p(x, 2] 0:)] ~ VLT, 0,y

where I, ,(6,) is the Fisher information of the full data distri-
bution, p(x, z | #). This quantity is the analog of the Newton
decrement used in the affine-invariant analysis of Newton’s
method [Nesterov and Nemirovski, 1994], but for the natural
gradient direction [Amari and Nagaoka, 2000] rather than the
Newton direction. While the Newton decrement is invariant
to affine reparametrizations, this “natural decrement” is also
invariant to any homeomorphism.
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4 Additional Results

This section summarizes additional results presented in the
full paper. Instead of assuming that the objective is smooth in
Euclidean norm and applying the methodology for the conver-
gence of gradient descent, which does not hold even for the
standard Gaussian mixture examples found in textbooks, we
show that EM for exponential families can be viewed as mirror
descent and analyzed through smoothness relative to a KL di-
vergence. This perspective leads to convergence rates that hold
with minimal assumptions, extends known asymptotic result
to the non-asymptotic regime, handles approximate solutions
to the M-step, and can be extended to analyse the E-step for
non-exponential families and describe stochastic variants.

4.1 Required Assumptions

The results presented here hold for regular exponential fami-
lies, as long as the updates are well defined. A subtle issue is
that the updates might lead to degenerate probability distribu-
tions. For example, in the case of a Gaussian mixture, we can
drive the NLL to —oo by putting the mean of one cluster on
a single point and driving its variance to 0. Such degenerate
solutions are challenging for non-asymptotic rates, as results
typically depend on the optimality gap £(6) — L* and are
vacuous if it is unbounded. However, those issues can be dealt
with by adding proper regularization, for example by using
Maximum a Posteriori estimation under an appropriate prior.

4.2 Local Linear Rates

It was already established by Dempster et al. that, asymptot-
ically, the EM algorithm converges r-linearly, meaning that
near a strict minima 6%, ||0;41 — 0*|| < r||6; — 6*||. The rate
of convergence r is determined by the amount of “missing
information” at §* that measures how much information is
missing from not knowing z [Orchard and Woodbury, 1972].
For a mixture of Gaussians, » would be small (and conver-
gence fast) if we find well-separated clusters, as there is little
uncertainty about the latent variables (the cluster membership),
and convergence would be fast.

This result, however, is only asymptotic. Existing non-
asymptotic linear rates rely on strong-convexity assumptions
[e.g. Balakrishnan et al. 2017], and show a linear rate of con-
vergence in strongly-convex regions. But the results depend on
the eigenvalues of the Hessian rather than the ratio of missing
information. As in Proposition 1, which shows that the EM
objective is 1-smooth relative to its log-partition function A
rather than measure smoothness in Euclidean norms, we can
characterize strong convexity relative to the log-partition func-
tion. Existing results on the convergence of mirror descent for
relatively-smooth, relatively-strongly convex functions [Lu et
al., 2018] then directly give that, if in a relatively strongly-
convex region, EM converges non-asymptotically at the rate
L(0p41) — L* < r(L(6;) — L"), with the same missing infor-
mation ratio. If the ratio of missing information diminishes
with each iterations as we find clusters that better explain the
data, the convergence rate improves and EM can converge su-
perlinearly for well-separated clusters [Salakhutdinov er al.,
2003; Xu and Jordan, 1996].

4.3 Inexact Variants

The analyses extend to generalized EM schemes, which do
not optimize the surrogate exactly in the M-step but output an
approximate (possibly randomized) update.

We consider multiplicative error, where the algorithm is
guaranteed to make at least some fraction of the progress of a
full M-step, and additive error, where the algorithm can make
arbitrary mistakes but has to eventually improve. An example
of multiplicative error for mixture models is the exact opti-
mization of only one of the mixture components, chosen at
random, like the ECM algorithm of Meng and Rubin. For ad-
ditive error, although suboptimal for the reasons mentioned
earlier, running GD with a line-search on the surrogate guar-
antees additive error if the objective is (locally) smooth. The
convergence rate of the algorithm is preserved, suffering a
penalty depending on the error. For multiplicative error, the
rate degrades by a multiplicative factor proportional to the
fraction of progress made, while for additive error, the rate
has an additional term depending on the average of all errors,
which has to go down to 0 to ensure convergence.

4.4 EM for General Models

While exponential families cover many applications, some are
not smooth, in Euclidean distance or otherwise. For example,
a mixture of Laplace distributions leads to surrogates with
discontinuous gradients (the Laplace distribution is not an
exponential family). In this case, the progress need not be
related to the gradient and Proposition 2 does not hold.

The tools presented here can still obtain partial answers. The
analyses in previous sections considered the progress of the
M-step, but we can instead focus on the E-step as the primary
driver of progress. Looking at the KL divergence between dis-
tributions on the latent variables only, p(z | x,6), an analog
of Proposition 2 holds for stationarity on the latent variables,
rather than the complete-data distribution. This guarantee is
weaker, but the assumption holds more generally. For exam-
ple, it is satisfied by any finite mixture, even if the mixture
components are non-differentiable.

4.5 Stochastic Variants

This perspective extends to stochastic approximation [Rob-
bins and Monro, 1951] variants of EM, which are becom-
ing increasingly relevant as they scale to large datasets. Al-
gorithms such as stochastic and online EM [Sato, 1999;
Cappé and Moulines, 2009] average the observed sufficient
statistics to update the parameters. This can be cast as stochas-
tic mirror descent [Nemirovski et al., 2009] with step-sizes
decreasing as 1/¢, while incremental EM [Neal and Hinton,
1998] and other variance-reduced variants [Chen et al., 2018;
Karimi et al., 2019] can be viewed as applications of variance
reduction methods like SAG or MISO [Le Roux et al., 2012;
Mairal, 2015] to mirror descent. However, analyses in those
settings still view of EM as a preconditioned gradient step,
using smoothness to handle the stochasticity. In some cases,
those works prescribe a step-size a proportional to 1/ which,
for Gaussian mixtures, implies using a step-size of 0. We
hope the tools developed here may help to fix this and similar
practical issues.
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