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Abstract

So far, aspect-based sentiment analysis (ABSA)
has involved with total seven subtasks, in which,
however the interactions among them have been
left unexplored sufficiently. This work presents
a novel multiplex cascade framework for unified
ABSA and maintaining such interactions. First,
we model total seven subtasks as a hierarchical
dependency in the easy-to-hard order, based on
which we then propose a multiplex decoding mech-
anism, transferring the sentiment layouts and clues
in lower tasks to upper ones. The multiplex strat-
egy enables highly-efficient subtask interflows and
avoids repetitive training; meanwhile it sufficiently
utilizes the existing data without requiring any fur-
ther annotation. Further, based on the characteris-
tics of aspect-opinion term extraction and pairing,
we enhance our multiplex framework by integrat-
ing POS tag and syntactic dependency information
for term boundary and pairing identification. The
proposed Syntax-aware Multiplex (SyMux) frame-
work enhances the ABSA performances on 28 sub-
tasks (7x4 datasets) with big margins.

1 Introduction

As one of the core directions of sentiment analysis, ABSA
has received extensive research attentions within past decade
[Wang et al., 2017; Li et al, 2018; Fei et al., 2021b].
ABSA has derived a number of subtasks, which all revolve
around predicting three major elements of ABSA, i.e., as-
pect, opinion and sentiment polarity, or their combina-
tions. For example, aspect term extraction (AE) and opin-
ion term extraction (OE) seek to extract aspect and opin-
ion terms respectively. Aspect-level sentiment classification
(ALSC) aims at predicting the sentiment polarity given an
aspect term, while triplet extraction (TE) targets as extract-
ing all the correlated <aspect, opinion, polarity> triplets
in a sentence. We illustrate the definitions of all the sub-
tasks in Fig. 1(a) with specific examples. Most prior works
solve one certain subtask in isolation [Wang er al., 2017;
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Figure 1: The definitions of all ABSA subtasks (a) and their correla-
tions (b). In (b), the task names point to prediction targets with solid
arrow lines. Dash lines indicate the tasks take the element as input.

Fan et al., 2018], while some efforts have been made to con-
struct unified methods for modeling as more subtasks as pos-
sible, so as to narrow the gaps between the modeling diver-
gences of them [Yan et al., 2021].

On the other hand, since different subtasks share much
interactive correlation in essence, some works consider ex-
plicitly incorporating such underlying shared signals [Li et
al., 2019; Hu et al, 2019]. Representatively, Chen and
Qian [2020] and Yu et al. [2021] propose to collaboratively
model the potential mutual interactions between ABSA sub-
tasks based on the multi-task learning framework. Unfortu-
nately, the interactions in these studies are limited to a small
subset of ABSA subtasks (e.g., AE, OE and AESC), being
inadequate enough to explore the rich shared information
among all total seven subtasks. As depicted in Fig. 1(b), AE
summarizes sentiment aspects, while OE emphasizes opin-
ion words and meanwhile entails sentiment polarities. All
the other subtasks are associated with each other based on
dyadic (e.g., aspect-opinion) or triadic relations (e.g., aspect-
opinion-polarity). Therefore, how to effectively and suffi-
ciently capture the inline interactions among all these sub-
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tasks for further enhancements still remains unexplored.

After carefully investigating the characteristics of the
ABSA subtasks, we gain the following major observations:

» Lower-level subtasks (e.g., AE and OE) actually lay the
foundations of ABSA, explicitly offering the core sentiment
layouts and clues for building up high-level subtasks.

» Higher-level subtasks (e.g., TE) contain more complete
and richer information, which can in return benefit low-level
tasks implicitly.

» All the subtasks can be unified by sharing the same

‘aspect-opinion-polarity’ ternary backbone, with slight diver-
gences on inputs or outputs.
Consequently, we consider modeling all these subtasks as a
hierarchical dependency (HD) as detailed in Fig. 2, including
four task groups ranging from Level A to Level D according
to the task properties, i.e., from easy to hard.

On this basis, we then present a multiplex cascade frame-
work for the unified ABSA. We formulate these subtasks with
a new cascade grid-tagging scheme. As shown in Fig. 3,
the system is built based on multi-task architecture, with all
subtasks sharing one common encoder. Each decoder makes
prediction for one certain subtask, all of which are cascaded
following the HD structure, practicing the philosophy: (1)
rendering the ABSA keynotes with aspect and opinion (also
entailing polarity) information produced at level A; (2) mul-
tiplexing the information of low-level tasks to the higher-level
tasks one by one. With such explicit multiplex design of
reusing the knowledge from low-level subtasks, the predic-
tions of upper subtasks will be gradually enhanced and the
subtask interactions are tightly captured.

Further, we notice that the key bottlenecks of our multiplex
framework lie in 1) the detection of the underlying aspect and
opinion terms, i.e., OE and AE at level A, and 2) the pair-
ing between aspect and opinion terms from level A to B. For
further enhancement, we leverage the external syntax knowl-
edge that has been extensively validated effective [Huang and
Carley, 2019; Fei et al., 2020]. First, the linguistic part-of-
speech (POS) tags entail rich boundary information between
span neighbors, which can essentially promote the recogni-
tion of aspect and opinion terms. Besides, the syntactic de-
pendency features can provide additional clues for support-
ing more accurate reasoning of aspect-opinion pairing. We
leverage a unified syntax graph convolution network [Wu et
al., 2021] to simultaneously model POS tags and dependency
features at the encoding side. In the decoding side, we further
introduce a syntax-guided pairing method by reharnessing the
syntax weights yielded at the encoder.

Our framework takes the current existing ABSA datasets,
where however not all training sentences has the annota-
tions simultaneously covering all seven subtasks. We thus
train seven decoders jointly on the shared training sets, while
updating those low-level decoders with partial annotations.
Evaluation results on 4 benchmark datasets suggest that the
proposed system significantly outperforms all the current
state-of-the-art ABSA models on total seven subtasks with
big margins, demonstrating the effectiveness of our method
for the unified ABSA. Our contributions include:

% We build a unified model for total seven ABSA sub-
tasks. We introduce a novel multiplex decoding based upon a
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Figure 2: The hierarchical dependency (HD) for seven ABSA sub-
tasks. - - - means the opinions are not prediction targets. means
the aspects are given as inputs. Lower-level subtasks predict ba-
sic information (e.g., aspects or opinions), while high-level subtasks
incrementally predict more information (e.g., sentiment polarities)
based on the information provided by lower-level subtasks.

cascade grid tagging method, fully reusing the shared infor-
mation and interactions among different subtasks. Our model
ensures high-efficient interflows, and meanwhile avoids du-
plicated or trivial training in previous single-task paradigm.

% We propose to incorporate rich external syntactic
knowledge, including POS tags and dependency trees, into
both the encoder and decoders for enhancing aspect-opinion
term extraction and pairing, which are the bottlenecks of all
ABSA systems.

% Our syntax-aware multiplex model (namely, SyMux)
pushes the state-of-the-art results for all seven ABSA sub-
tasks against best-performing baselines. The model can work
without annotating any additional shared data, since the ex-
isting training data of high-level subtasks (e.g., TE) covers all
the annotations needed by low-level subtasks.!

2 Methodology

Task formulation. Based on the definition in Fig. 1(a), we
now give the specific formulations of each subtask. The over-
all framework follows the multi-task learning scheme. The
shared encoder takes an input sentence S={w, - - - ,wy }, and
then seven separate decoders of different subtasks will yield
their own outputs. For (1) AE, (2) OE, (3) AOE and (4)
AOPE, the tag set is {0,I}, where O means a trivial word and
T means a word belonging to a term or forming an aspect-
opinion pair. For (5) ALSC, (6) AESC and (7) TE, the tag

'Resources at https://github.com/scofield7419/UABSA-SyMux
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set will be {0,P,N,M}, where O means a trivial word, and
P/N/M imply that a word belongs to a term or an aspect-
opinion pair meanwhile whose sentiment polarity is posi-
tive/negative/neutral, respectively. Specifically, for the base
tasks OE and AE at level A, we take the 1-D sequential tag-
ging scheme, while the high-level subtasks take the 2-D grid
tagging [Wei er al., 2020; Wu et al., 2020].

Considering the example “Great steak but costly beer” in
Figure 2, each decoder produces the following outputs Y':

(1) AE :

(2) OE :
! =[0,1,0,0,1],

Y? = [1,0,0,1,0],

(aAmagggg?' (@Ammfgggg?
Y3=|00000]|, yi= [0000O0],
00000 00000
01000] lOI 00O
(5) ALSC:[ 299001 (6) amsc: [00 00N
Y?=|00000]|, Y®=[{00000]|,
00000 00000
OPOO0OO] lOPOOO
00000
(M TE: 150600N
Y'=[{00000|.
00000
OPOOO

Note that underlined tags mean that gold-standard aspect
terms are given, while those tags with vertical dots at left
mean that opinions are not the required prediction targets.

2.1 Encoder

Contextual encoder. Pre-trained language models (PLM),
e.g., BERT [Devlin ef al., 2019] have been shown prominent
on retrieving the contextualized features, becoming the de-
facto encoder in a wide range of NLP tasks [Eberts and Ulges,
2020; Zhao et al., 2020]. In this work we take the BERT-
variant PLM, RoBERTa, as the context encoder, in which the
calculations are summarized as:

{hlv"' »hn} :ROBERTa({wlv"' »wn})v (1)
where h,, is an output representation for word wy,.
Unified syntax GCN encoder. Essentially, the recognition
of aspect and opinion terms as well as their pairing are two
key foundations of our system. Therefore, we integrate exter-
nal syntactic knowledge into our system for enhancement, in-
cluding the word-level linguistic POS tags for potential span
boundaries of aspect and opinion terms [Wu er al., 2021], and
the syntactic dependency trees for aspect-opinion pairing [Fei
et al., 2021a; Fei et al., 2021cl. Following Wu et al. [2021],
we leverage a unified syntax GCN (USGCN) encoder to fuse
these two sources simultaneously.

Based on the input S we first have a list of POS tags {w?!'},,
for each word. We maintain the POS embedding vector x”
via a look-up table. Then we have the corresponding depen-
dency tree of S. We form a graph G = (V, E), where V is
a set of words, and F is a set of dependency edges between
each pair of words. We define an adjacency matrix {a; ; }nxn
in E, in which a; ;=1 if there is an edge between w; and wj,
and a; ;=0 vice versa. We additionally enable the self-loop
of each word and bidirectional edges between valid word pair
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Figure 3: An overview of the SyMux framework. At encoding side a
RoBERTa LM and a syntax GCN encoder sequentially generate the
context representations for the input. At the decoding side, the AE
and OE decoders first produce the predictions of aspect and opinion
terms. Then, aspect and opinion representations are paired into a
2-D sentiment representation, which is further guided by the syntax
information. Thereafter, the rest upper subtask decoders incremen-
tally multiplex sentiment representations for predictions one by one.

for information enhancement. Suppose e! is the hidden rep-
resentation of w; at [-th USGCN layer:

e; =ReLUCj_ 0p ;(Wh - [ej hiah))), ()
where ozﬁyj is the syntactic-aware neighboring weight ob-
tained from:

-1 -1
a;;-exp(e;” ®e; ")
= e , 3)

n -1 -1

Zj:l aij-exp(e;  ®e; )
where ® is an element-wise multiplication. The weight ma-
trix v ; entails rich syntactic relationship between tokens.

We then apply a gate c to flexibly coordinate the contribu-
tion between POS information and USGCN representations,
since term recognition may rely directly on the span boundary
signals provided by POS tags. We will empirically validate
the usefulness of such operation in the experiments.

ct = Sigmoid(W;el; z?]),
vil=doe+1-d) ol
where v i the final output of the [-th USGCN. We take total
L layers of USGCN for full syntax knowledge propagation.

Finally, we explicitly concatenate the outputs of USGCN and
RoBERTa encoders as the final contextualized representation

“4)
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(a) Syntactic dependency structure.
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Figure 4: Syntax-guided aspect-opinion pairing. (b) reflects Eq. (6),
and (c) is obtained from Eq. (3).

for each word: v; = [vS""; hy).

2.2 Decoder

AE and OE decoding. As shown in Fig. 3, the AE decoder
first obtains its representation R'={r}},, based on the con-
text representation v; via a non-linear transformation, i.e.,
r1=FFNs(v;). Also the representation R! will be duplicated
as the OE decoder representation R?={r?},, via another non-
linear transformation. AE and OE decoders then produce
their own predictions (i.e., Y, Y?) based on their 1-D rep-
resentations with two separate softmax classifiers.
Syntax-guided pairing. The next step is to construct a 2-D
representation R ={r}, ., based on R' and R? for the
aspect-opinion pairs. We reach this via Cartesian product:

T = Walriir], 5)

where the vertical direction in R denotes aspect terms
while the horizontal direction denotes opinion terms. To aid
the pairing, we further utilize the syntactic dependency sig-
nals. Intuitively, the syntax structure reveals how aspect and
opinion terms relate to each others, as depicted in Fig. 4(a).
Although we encode the dependency features previously via
USGCN, the information can be quite diluted at the decoding
stage. We thus reharness the syntax weights calculated in Eq.
(3) for the pairing, i.e., syntax-guided pairing, as in Fig. 4.
r% = %(afj + aﬁi) . Wg[’l"il;’l"?] ) 6)
Multiplex decoding. As we formulate the unified ABSA
subtasks into HD (cf. Fig. 2), all the remaining sub-
tasks can share one same sentiment layout in our multiplex
framework. Naturally, almost all the pivotal information
needed for detecting the downstream subtasks is entailed in
the initial 2-D representation R™. Thus we perform rep-
resentation multiplexing based on R along the order of
[1/2—(3—4)—(5—6)—7] within the HD structure, as can
be seen in Fig. 3.
Technically, we obtain the decoder representation RF

(3<k<7) of the forward k-th subtask via the chain operation
RFRF1:

Rk,S — Rk—l . v‘/‘f:,s7 (7)

RF =¢g* o R* + (1 - g*) @ R*7, (8)

where R*P ={rf”jp}nxn is a private trainable 2-D parame-
ter of k-th subtask for maintaining the task-private features,
Wf’s € R™*™ is a trainable transition matrix, and g* is a
gate controlling the strength between shared and private in-
formation. Note that R? is initialized with RM .

For AOPE, AESC and TE, the private representation RkF
is randomly initialized. For AOE and ALSC where aspect an-
notations are available, we particularly inject the gold aspect
signals into R¥'* by concatenating an embedding ¢ which
is a binary aspect indicator, where 1 denotes an aspect term
and vice versa for 0.

3,P 3,P,

T [Qj sl 9
5P 5.P.

roy e (10)

where ‘¢’ represents an affine transformation.

Predicting. Based on the representations R¥, each subtask
yields its own prediction Y'* via a softmax classifier on each
elements of the 2-d matrix. For ALSC and AESC, the opin-
ion terms in such 2-D prediction are not required, and only
the aspects or polarities will be output. It is also worth notic-
ing that in prior work some subtasks including AOE, ALSC
and AESC are generally modeled as 1-D formulation (i.e., se-
quential labeling or sentence classification) since their inputs
or outputs relate mainly to one certain element (i.e., either
aspects or opinions/polarities). But in our multiplex frame-
work, both two elements are fully considered as complemen-
tary sentiment clues for further enhancements.

2.3 Training

We perform multi-task training of our framework, where the
input sentences should come with annotations of whole total
seven subtasks. However, not all the training sentences has
been labeled simultaneously with all subtasks. Therefore, we
on the one hand perform error back-propagation for all sub-
task decoders on those shared training sets; on the other hand
we partially train those decoders with input sentences that
have target annotations and meanwhile keep the rest decoders
fixed. The objective is to jointly optimize all seven subtasks:

L=57_ MLy, (11)
where \; (ZZ:1 Ar = 1) is a co-efficiency of k-th task loss:
1 N

Lk:—NZYklong, (12)

here N is the number of training set for task k, and Y'* is the
ground-truth labels.

3 Experiments

3.1 Setups

Following Yan et al. (2021), we use the Semeval bench-
mark [Pontiki et al., 2014; Pontiki et al., 2015; Pontiki et
al., 2016], including Res14, Lap14, Res15 and Res16, which

4124



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

AE/ALSC
Sent. JAESC OE AOE/AOPE TE
 Source / D17&Dyy  D17&D2g D1g&Dag Do
=~ Train(Shrd.) 1,497 2,112 2,439 2,439 2,439
é Train(Prvt.) 1,663 2,160 2,011 518 230
Test 800 1,226 1,289 1,000 862
<+ Source / D17&D3yy  D17&Dyg D19& Dy Dy
i~ Train(Shrd.) 1,035 1,242 1,420 1,420 1,420
5 Train(Prvt.) 2,112 2,443 2,442 413 182
Test 800 988 1,079 572 490
., Source / D17&Dyy  D17&D2g D19&Dag Do
=~ Train(Shrd.) 665 867 1,014 1,014 1,014
é Train(Prvt.) 724 851 865 330 147
Test 685 850 905 532 455
o Source / Doy Doy Dig&Dzy  Dag
— Train(Shrd.) 1,052 1,380 1,605 1,605 1,605
&  Train(Prvt.) 25 0 0 33 0
Test 320 405 465 476 465

Table 1: Data statistics. ‘Shrd.’: shared annotations over all tasks.
‘Prvt.’: private annotations for certain tasks.

have only the annotations for AE, ALSC and AESC. Follow-
up works further partially contribute labels for different sub-
tasks based on the Semeval sentences. Representatively,
Wang er al. [2017] annotate the unpaired opinion terms (de-
noted as Dy7), while Fan ef al. [2019] pair the aspects with
opinion terms (D19), and Peng et al. [2020] provide the labels
for triple extraction (D). To enable multi-task training, we
re-ensemble them so that most of the sentences’ annotations
cover all seven subtasks. Table 1 shows the data statistics.

We use the base version of ROBERTa PLM. L=3 in US-
GCN. Most of the representations have the shape of 300-d.
The loss co-efficiency Ay is fine-tuned for different tasks.

We make comparisons against some top-performing ABSA
baselines, following Yan et al. (2021), including the models
for ABSA subtasks at level A and C, such as SPAN [Hu et al.,
2019], IMN [He et al., 2019], RACL [Chen and Qian, 2020]
and MIN [Yu ef al., 2021], and the systems capable of ad-
dressing all subtasks: CMLA [Wang ef al., 2017], RINANTE
[Dai and Song, 20191, Li-unified [Li ef al., 2019], GTS [Wu
et al., 2020], Dual-MRC [Mao et al., 20211, GEN [Yan et al.,
2021]. All the comparing models install PLM (e.g., BERT,
BART) for fair comparisons. For each subtask, we adopt the
same evaluation metrics as the corresponding previous works
do. We report the F1 scores for all tasks.

3.2 Results and Analyses

Main results. Table 2 shows the overall results on four
datasets. We see that the unified systems (such as Dual-MRC
and GEN) can bring very strong performances, while those
models (e.g., RACL and MIN) considering rich interactions
among subtasks can even achieve higher results on several
certain subtasks. Yet our SyMux system significantly out-
performs all these best-performing baselines universally on
all subtasks over all datasets with big margins. This demon-
strates the effectiveness of our method. More interestingly,
we can observe that the higher-level tasks can benefit more
from our system, comparing to those tasks at bottom levels,
e.g., AE and oE at level A. Especially, ALSC, AESC and TE
tasks always gain over 2 points of F1 over four datasets, com-
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Lvl-A Lvl-B Lvl-C Lvl-D
AE OE AOE AOPE ALSC AESC TE
® Resl4
SPAN 86.71 8436 / / 71.75 73.68 /
IMN 84.06 85.10 / / 75.67 70.72 /
RACL 86.38 87.18 / / 81.61 75.42 /
MIN 87.91 85.66 / / 80.48 76.02 /
CMLA 81.22 83.07 79.53 4895 78.65 70.62 43.12
RINANTE 81.34 83.33 80.68 46.29 76.18 48.15 34.03
Li-unified 81.62 85.26 81.36 55.34 74.55 73.79 51.68

GTS 83.82 85.04 82.04 75.53
Dual-MRC 86.60 86.22 83.73 74.93

80.22 74.85 70.20
82.04 76.57 70.32

GEN 87.07 87.29 85.38 77.68 75.56 73.56 72.46
SyMux — 89.02 88.54 87.05 79.42 84.45 "78.68  74.834"
A +1.11 +1.25 +1.67 +1.74 +2.41 +2.09 +2.38
o Lapl4
SPAN 82.34 7958 / / 62.50 61.25 /
IMN 77.55 81.00 / / 75.56 61.73 /
RACL 81.79 79.72 / / 73.91 63.40 /
MIN 83.22 81.80 / / 7495 64.83 /
CMLA 79.53 78.68 77.95 44.10 70.20 56.90 32.90
RINANTE 80.40 77.13 7534 29.70 68.45 36.70 20.00
Li-unified 78.56 78.54 77.55 52.56 70.03 63.38 4247
GTS 82.48 79.52 78.61 65.67 73.85 64.23 54.58
Dual-MRC 82.51 80.44 79.90 63.37 75.97 65.94 55.58

GEN 83.52 77.86 80.55 66.11 76.76 68.17 57.59
SyMux ~ 84.42 82.55 81.97 67.64 78.99 ~70.32760.11
A +0.90 +0.75 +1.42 +1.53 +2.23 +2.15 +2.52
® Resl>
SPAN 74.63 76.85 / / 50.28 62.29 /
IMN 69.90 73.29 / / 70.10 60.22 /
RACL 73.99 76.00 / / 7491 66.05 /
CMLA 76.03 74.67 73.42 44.60 71.50 53.60 35.90

RINANTE 73.38 75.40 72.50 35.40 7133 41.30 28.00
Li-unified 74.65 74.25 7532 56.85 70.64 64.95 46.69
GTS 78.22 79.31 76.41 67.53 72.67 6530 58.67
Dual-MRC 75.08 77.52 74.50 64.97 73.59 65.08 57.21

GEN 7548 76.49 80.52 6798 7391 66.61 60.11

SyMux T 79.73 80.7T 82.42 69.82 777.51 "69.08 63.13"
A +1.51 +1.40 +1.71 +1.84 +2.60 +2.47 +3.02

® Resl6

SPAN 74.68 7245 / / 82.23 82.23 /

RACL 7491 73.56 / / 81.36 68.58 /

CMLA 7420 72.20 80.63 50.00 78.32 61.20 41.60

RINANTE 72.82 70.45 79.34 30.70 75.13 42.10 23.30
Li-unified 73.36 73.87 80.66 53.75 79.60 7120 44.51
GTS 75.80 76.38 82.79 74.62 83.21 70.68 67.58
Dual-MRC 76.87 77.90 83.33 75.71 84.68 70.84 67.40

GEN 81.35 80.54 87.92 77.38 86.20 75.69 69.98
SyMux — 8241 81.68 89.88 78.82 88.62 77.95772.76"
A +1.06 +1.14 +1.96 +1.44 +2.42 4226 +2.78

Table 2: Performances (F1) on each subtasks. A means our im-
provements over the second-best ones (underlined). Values in  are
copied from Yan et al. (2021), in  are from Wu et al. (2020), in

are from Yu et al. (2021), in  are from our re-implementation
(average results over five runs). means that the method is not
applicable for that subtask.

pared with the best baseline. This substantially implies the
necessity to take the multiplex idea for unified ABSA, fully
reusing and recycling of the information learned at the lower
level for facilitating the upper level tasks. Also it is worth
explicitly noticing that such improvements of all subtasks by
our system are obtained via the multiplex mechanism, with-
out using any additional ABSA annotations.

Ablation. Since we take the external syntax information for
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Lvl-A Lvl-B Lvl-C Lvl-D

AE OE AOE AOPE ALSC AESC TE

ual- . . K . . R .
GEN 87.07 87.29 8538 77.68 7556 73.56 72.46
SyMux 89.02 88.34 87.05 79.42 84.45 78.68 74.84
“w/o POS™ 87.01 86.27 86.53 738.4T ®4.04 ~77.80 7419
A -2.01 -2.27 -0.52 -1.01 -041 -0.88 -0.65
“w/o Gate™ 87.97 87.32Z 86.73 78.95 ®4.33 77846 74775~
A -1.05 -1.22 -0.32 -047 -0.12 -0.22 -0.09
“w/o SGP™ 88.87 88.40 86.13 77.84 83.67 77.42 73.88
A -0.15 -0.14 -0.92 -1.58 -0.78 -1.26 -0.96

Table 3: Ablation results on Res/4. The most significant ablation
items are highlighted in

Lvl-A Lvl-B Lvl-C Lvl-D

AE OE AOE AOPE ALSC AESC TE
e Separating
Dual-MRC 86.60 86.22 83.73 74.93

82.04 76.57 70.32

GEN 87.07 87.29 85.38 77.68 75.56 73.56 72.46
e Partial Sharing
IMN 84.06 85.10 / / 75.67 70.72 /
RACL 86.38 87.18 / / 81.61 75.42 /
MIN 8791 85.66 / / 80.48 76.02 /
o Partial Sharing + Multiplex
87.78 87.53 / / / / /
88.59 88.21 86.75 79.18 / / /
88.32 8795 / / 83.87 78.02 /
SyMux 88.67 88.28 86.86 79.30 / / 74.10
88.72 88.34 / / 84.18 78.23 74.45
88.97 88.49 86.97 79.34 84.29 78.34 /
o Full Sharing + Multiplex
SyMux 89.02 88.54 87.05 79.42 84.45 78.68 74.84

Table 4: Results (on Resl4) with different sharing mechanisms
among subtasks. The tasks with results marked as /° in sharing-
aware methods are made unshareable.

enhancement, here we investigate the impacts. By remov-
ing the POS tag features away from USGCN, as in Table
3, there can be notable performance drops on AE and OE.
This proves the importance of the linguistic POS knowledge
for helping the term boundary detection. Likewise, if unin-
stalling the POS gate c (cf. Eq. 4) the overall results are also
hurt, especially for the level-A tasks. This mostly verifies our
assumption that it should have more sufficient and direct ac-
cess to boundary information (i.e., POS tags) to aid the aspect
or opinion extraction. Further stripping off the dependency
knowledge from decoding, i.e., without syntax-guided pair-
ing (SGP), we witness big performance reductions on all the
higher-level 2-D subtasks. On the contrary, this influences
very little on the AE and OE tasks. This further verifies that
the POS and dependency features contribute to unified ABSA
from different angles. And making use of both two features
is complementarily favorable for the tasks.

Separating or sharing? sharing by multiplex! Recent re-
lated research tries to model the interactions between ABSA
subtasks via sharing-aware learning, which has not been con-
sidered by those separating-learning methods. In Table 4,

A0 HD[1/2—(5—6)—(3—4)—7] I HD[1 /27— (3—4)— (5—6)]
0 Shuffled order decoding
AE __OE AQE AOPE ALSC AESC TE

Parallel decoding

o

F1 Drop (%)
R

Figure 5: Performance drops using other decoding orders.

we show the comparisons between ‘Separating’ and ‘Partial
Sharing’, and we learn that those baselines considering shar-
ing mechanisms (e.g., RACL, MIN) can actually be beaten by
those recent separating-learning models that employ certain
powerful strategies, e.g., taking stronger pre-trained language
model of BART in GEN, or remodeling the tasks as reading
comprehension in DUAL-MRC. However, our sharing-based
framework can surpass all strong separating-learning models.
Via this, we prove that it is still important to perform sharing-
aware learning for unified ABSA. Notedly, with the multiplex
mechanism, our system with partial sharing can still substan-
tially outperform the separating-learning methods. For exam-
ple, by merely sharing the four tasks at level A and B, ours
greatly outperforms GEN and DUAL-MRC on all subtasks.
In the meantime, this implies that our multiplex system can
be of great usefulness in real-world applications, i.e., applied
to some more strict scenarios where not all the data for total
of seven subtasks are available.

As we revealed earlier, those existing sharing-aware base-
lines trying to promote the interactions among subtasks are
unfortunately limited to a very small subset of tasks, i.e., par-
tial sharing. Here we can observe that the full-scale infor-
mation sharing of our model (in ‘Full Sharing+Multiplex’)
enables to produce more accurate predictions, providing
most sufficient interactions, comparing to any partial shar-
ing scheme. Further looking into the SyMux itself, differ-
ent schemes of partial sharing lead to varied performances,
and more sharing generally gives better results. Furthermore,
even with the same partial sharing as in baselines (i.e., shared
on level A and C), ours still performs much better. We thus
can conclude that the key to a successful sharing-aware learn-
ing among ABSA subtasks is the multiplex method.

Multiplexing order in hierarchical dependency. We sug-
gest a hierarchical dependency of subtasks with the order of
[1/2—(3—4)—(5—6)—7], which ensures a reasonable in-
formation interflow from low to high (level A to level D).
Here we explore the impacts when following other different
multiplexing orders. In Fig. 5 we plot the performance drop
based on Resl4. Overall, using other decoding orders can
hurt all tasks’ performances. Especially, the shuffled order
and the parallel order, which are essentially the equivalents
to getting rid of multi-task learning based multiplex strategy,
lead to the biggest decreases. Even exchanging the subtasks
at level B and level C can result in slight drops.

Model robustness against data scarcity. Owing to the mul-
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Figure 6: ABSA results on data-rich (100%) and data-scarce (20%)
setting where we only reduce the annotations for the target subtask,
while the labels for training other tasks are available in full scale.

tiplex decoding design, the follow-up tasks in the HD struc-
ture can greatly benefit from their predecessor tasks. Here we
further study the performances of each subtask when the an-
notations for the corresponding task are scarce, i.e., few-shot
learning. Fig. 6 shows the results of three representative high-
level tasks (AOPE, AESC and TE) based on Res/4 data. On
the data-rich setting, i.e., with sufficient training signals, each
system performs normally (ours performs the best). However,
when only feeding 20% training annotations for training each
of the three tasks respectively, the performances drop sub-
stantially. By comparison, our system even without using the
full annotations for training one certain task, obtains much
better results than baselines. This directly confirms that the
multiplex cascade framework can fully recycle the signals of
prior subtasks, e.g., sentiment layouts or clues, which semi-
supervisedly supports the reasoning of the topper tasks.

4 Related Work

The studies of ABSA mainly center on three key factors, as-
pect, opinion and sentiment polarity, which together depict
the complete sentiment picture, i.e., aspect indicates what the
sentiment targets are, sentiment polarity describes how the
sentiment strengths are, and opinion explains why have such
polarities. Within the scope of the ABSA, so far there can be
a set of specific subtasks, each of them focuses on one spe-
cific element or the combinations of them, including 1) aspect
term extraction (AE) [Li and Lam, 2017], 2) opinion term ex-
traction (OE) [Wang er al., 20171, 3) aspect-oriented opinion
extraction (AOE) [Fan et al., 20191, 4) aspect-opinion pair
extraction (AOPE) [Zhao et al., 2020], 5) aspect-level senti-
ment classification (ALSC) [Tang et al., 2016], 6) aspect ex-
traction and sentiment classification (AESC) [Hu et al., 2019]
and 7) triplet extraction (TE) [Peng erf al., 2020].

At the initial stage, separate solutions are extensively
adopted for those standalone subtasks (e.g., AE, OE, ALSC)
[Li and Lam, 2017; Fan et al., 2018]. Later, hybrid ABSA
subtasks (e.g., AOE, AESC, TE) have been put on and solved
with joint models [Li et al., 2019; Peng et al., 2020]. And
then, some unified methods have been proposed to model
as many subtasks as possible, so as to narrow the gaps be-
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tween the modeling divergences of them [Chen et al., 2020;
Mao et al., 2021]. Very recently, Yan et al. [2021] unify to-
tal seven subtasks with a pointer-network based sequence-to-
sequence framework. Unlike them, in this work, we construct
a unified ABSA model to facilitate the information exchange.
On the other hand, several studies attempt to promote the in-
teractions between some ABSA subtasks. For example, Chen
and Qian [2020] and Yu et al. [2021] take the multi-task strat-
egy to enhance the collaborative learning between the tasks
of AE, OE and AESC. Yet these works only consider a very
small subset of the subtasks. In this work, we reveal that ac-
tually the underlying information of all subtasks can largely
be reused, based on which we propose a novel syntax-aware
multiplex framework for better unification.

5 Conclusions

We investigate a syntax-aware multiplex method for unified
ABSA. We model total seven ABSA subtasks as a hierar-
chical dependency, based on which we present a multiplex
cascade decoding framework, fully reusing the shared senti-
ment information and layout among different tasks. On the
other hand, we incorporate both syntactic POS tag and de-
pendency tree features for enhancing aspect-opinion term ex-
traction and pairing. Our framework enables high-efficient
interflows of ABSA subtasks, and meanwhile avoids dupli-
cated and trivial training in previous separate-learning meth-
ods. Experimental results show that our method outperforms
many state-of-the-art baselines for ABSA. In-depth analyses
reveal the system’s strengths, e.g., data robustness. We also
find that our model performs well when the annotated data
of some subtasks are not available or the data size is quite
small, which suggests that the method has a wider potential
application scenarios of ABSA. Future directions can revolve
around the data-driven attempts for solving unbalanced senti-
ment polarities and inconsistent annotations of subtasks.
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